progenitor/progenitor-impl/src/cli.rs

787 lines
25 KiB
Rust
Raw Normal View History

// Copyright 2024 Oxide Computer Company
2023-03-28 21:54:05 +00:00
use std::collections::BTreeMap;
2023-03-28 21:54:05 +00:00
use heck::ToKebabCase;
use openapiv3::OpenAPI;
use proc_macro2::TokenStream;
use quote::{format_ident, quote};
use typify::{Type, TypeEnumVariant, TypeSpaceImpl, TypeStructPropInfo};
2023-03-28 21:54:05 +00:00
use crate::{
method::{
OperationParameterKind, OperationParameterType, OperationResponseStatus,
},
to_schema::ToSchema,
util::{sanitize, Case},
validate_openapi, Generator, Result,
};
struct CliOperation {
cli_fn: TokenStream,
execute_fn: TokenStream,
execute_trait: TokenStream,
}
impl Generator {
/// Generate a `clap`-based CLI.
2023-03-28 21:54:05 +00:00
pub fn cli(
&mut self,
spec: &OpenAPI,
crate_name: &str,
) -> Result<TokenStream> {
validate_openapi(spec)?;
// Convert our components dictionary to schemars
let schemas = spec.components.iter().flat_map(|components| {
components.schemas.iter().map(|(name, ref_or_schema)| {
(name.clone(), ref_or_schema.to_schema())
})
});
self.type_space.add_ref_types(schemas)?;
let raw_methods = spec
.paths
.iter()
.flat_map(|(path, ref_or_item)| {
// Exclude externally defined path items.
let item = ref_or_item.as_item().unwrap();
item.iter().map(move |(method, operation)| {
(path.as_str(), method, operation, &item.parameters)
})
})
.map(|(path, method, operation, path_parameters)| {
self.process_operation(
operation,
&spec.components,
path,
method,
path_parameters,
)
})
.collect::<Result<Vec<_>>>()?;
let methods = raw_methods
.iter()
.map(|method| self.cli_method(method))
.collect::<Vec<_>>();
let cli_ops = methods.iter().map(|op| &op.cli_fn);
let execute_ops = methods.iter().map(|op| &op.execute_fn);
let trait_ops = methods.iter().map(|op| &op.execute_trait);
2023-03-28 21:54:05 +00:00
let cli_fns = raw_methods
.iter()
.map(|method| {
format_ident!(
"cli_{}",
sanitize(&method.operation_id, Case::Snake)
)
})
.collect::<Vec<_>>();
let execute_fns = raw_methods
.iter()
.map(|method| {
format_ident!(
"execute_{}",
sanitize(&method.operation_id, Case::Snake)
)
})
.collect::<Vec<_>>();
let cli_variants = raw_methods
.iter()
.map(|method| {
format_ident!(
"{}",
sanitize(&method.operation_id, Case::Pascal)
)
})
.collect::<Vec<_>>();
let crate_path = syn::TypePath {
qself: None,
path: syn::parse_str(crate_name).unwrap(),
};
2023-03-28 21:54:05 +00:00
let code = quote! {
use #crate_path::*;
pub struct Cli<T: CliConfig> {
client: Client,
config: T,
2023-03-28 21:54:05 +00:00
}
impl<T: CliConfig> Cli<T> {
pub fn new(
client: Client,
config: T,
) -> Self {
Self { client, config }
2023-03-28 21:54:05 +00:00
}
pub fn get_command(cmd: CliCommand) -> clap::Command {
match cmd {
#(
CliCommand::#cli_variants => Self::#cli_fns(),
)*
}
}
#(#cli_ops)*
2023-03-28 21:54:05 +00:00
pub async fn execute(
&self,
cmd: CliCommand,
matches: &clap::ArgMatches,
) -> anyhow::Result<()> {
match cmd {
2023-03-28 21:54:05 +00:00
#(
CliCommand::#cli_variants => {
// TODO ... do something with output
self.#execute_fns(matches).await
2023-03-28 21:54:05 +00:00
}
)*
}
2023-03-28 21:54:05 +00:00
}
#(#execute_ops)*
2023-03-28 21:54:05 +00:00
}
pub trait CliConfig {
fn success_item<T>(&self, value: &ResponseValue<T>)
where
T: schemars::JsonSchema + serde::Serialize + std::fmt::Debug;
fn success_no_item(&self, value: &ResponseValue<()>);
fn error<T>(&self, value: &Error<T>)
where
T: schemars::JsonSchema + serde::Serialize + std::fmt::Debug;
fn list_start<T>(&self)
where
T: schemars::JsonSchema + serde::Serialize + std::fmt::Debug;
fn list_item<T>(&self, value: &T)
where
T: schemars::JsonSchema + serde::Serialize + std::fmt::Debug;
fn list_end_success<T>(&self)
where
T: schemars::JsonSchema + serde::Serialize + std::fmt::Debug;
fn list_end_error<T>(&self, value: &Error<T>)
where
T: schemars::JsonSchema + serde::Serialize + std::fmt::Debug;
2023-03-28 21:54:05 +00:00
#(#trait_ops)*
}
#[derive(Copy, Clone, Debug)]
pub enum CliCommand {
#(#cli_variants,)*
}
impl CliCommand {
pub fn iter() -> impl Iterator<Item = CliCommand> {
vec![
#(
CliCommand::#cli_variants,
)*
].into_iter()
}
}
};
Ok(code)
}
fn cli_method(
&mut self,
method: &crate::method::OperationMethod,
) -> CliOperation {
let CliArg {
parser: parser_args,
consumer: consumer_args,
} = self.cli_method_args(method);
2023-03-28 21:54:05 +00:00
let about = method.summary.as_ref().map(|summary| {
quote! {
.about(#summary)
2023-03-28 21:54:05 +00:00
}
});
2023-03-28 21:54:05 +00:00
let long_about = method.description.as_ref().map(|description| {
2023-03-28 21:54:05 +00:00
quote! {
.long_about(#description)
2023-03-28 21:54:05 +00:00
}
});
let fn_name = format_ident!("cli_{}", &method.operation_id);
2023-03-28 21:54:05 +00:00
let cli_fn = quote! {
pub fn #fn_name() -> clap::Command
{
clap::Command::new("")
#parser_args
2023-03-28 21:54:05 +00:00
#about
#long_about
2023-03-28 21:54:05 +00:00
}
};
let fn_name = format_ident!("execute_{}", &method.operation_id);
let op_name = format_ident!("{}", &method.operation_id);
2023-03-28 21:54:05 +00:00
let (_, success_kind) = self.extract_responses(
2023-03-28 21:54:05 +00:00
method,
OperationResponseStatus::is_success_or_default,
);
let (_, error_kind) = self.extract_responses(
2023-03-28 21:54:05 +00:00
method,
OperationResponseStatus::is_error_or_default,
);
let execute_and_output = match method.dropshot_paginated {
// Normal, one-shot API calls.
None => {
let success_output = match success_kind {
crate::method::OperationResponseKind::Type(_) => {
quote! {
{
self.config.success_item(&r);
Ok(())
}
}
}
crate::method::OperationResponseKind::None => {
quote! {
{
self.config.success_no_item(&r);
Ok(())
}
}
}
crate::method::OperationResponseKind::Raw
| crate::method::OperationResponseKind::Upgrade => {
quote! {
{
todo!()
}
}
}
};
let error_output = match error_kind {
crate::method::OperationResponseKind::Type(_)
| crate::method::OperationResponseKind::None => {
quote! {
{
self.config.error(&r);
Err(anyhow::Error::new(r))
}
}
}
crate::method::OperationResponseKind::Raw
| crate::method::OperationResponseKind::Upgrade => {
quote! {
{
todo!()
}
}
}
};
quote! {
let result = request.send().await;
match result {
Ok(r) => #success_output
Err(r) => #error_output
}
}
}
// Paginated APIs for which we iterate over each item.
Some(_) => {
let success_type = match success_kind {
crate::method::OperationResponseKind::Type(type_id) => {
self.type_space.get_type(&type_id).unwrap().ident()
}
crate::method::OperationResponseKind::None => quote! { () },
crate::method::OperationResponseKind::Raw => todo!(),
crate::method::OperationResponseKind::Upgrade => todo!(),
};
let error_output = match error_kind {
crate::method::OperationResponseKind::Type(_)
| crate::method::OperationResponseKind::None => {
quote! {
{
self.config.list_end_error(&r);
return Err(anyhow::Error::new(r))
}
}
}
crate::method::OperationResponseKind::Raw
| crate::method::OperationResponseKind::Upgrade => {
quote! {
{
todo!()
}
}
}
};
quote! {
self.config.list_start::<#success_type>();
// We're using "limit" as both the maximum page size and
// as the full limit. It's not ideal in that we could
// reduce the limit with each iteration and we might get a
// bunch of results we don't display... but it's fine.
let mut stream = futures::StreamExt::take(
request.stream(),
matches
.get_one::<std::num::NonZeroU32>("limit")
.map_or(usize::MAX, |x| x.get() as usize));
loop {
match futures::TryStreamExt::try_next(&mut stream).await {
Err(r) => #error_output
Ok(None) => {
self.config.list_end_success::<#success_type>();
return Ok(());
}
Ok(Some(value)) => {
self.config.list_item(&value);
}
}
}
}
}
};
2023-03-28 21:54:05 +00:00
let execute_fn = quote! {
pub async fn #fn_name(&self, matches: &clap::ArgMatches)
-> anyhow::Result<()>
2023-03-28 21:54:05 +00:00
{
let mut request = self.client.#op_name();
#consumer_args
2023-03-28 21:54:05 +00:00
// Call the override function.
self.config.#fn_name(matches, &mut request)?;
#execute_and_output
2023-03-28 21:54:05 +00:00
}
};
// TODO this is copy-pasted--unwisely?
let struct_name = sanitize(&method.operation_id, Case::Pascal);
let struct_ident = format_ident!("{}", struct_name);
2023-03-28 21:54:05 +00:00
let execute_trait = quote! {
fn #fn_name(
&self,
matches: &clap::ArgMatches,
request: &mut builder :: #struct_ident,
) -> anyhow::Result<()> {
2023-03-28 21:54:05 +00:00
Ok(())
}
};
CliOperation {
cli_fn,
execute_fn,
execute_trait,
}
}
fn cli_method_args(
&self,
method: &crate::method::OperationMethod,
) -> CliArg {
let mut args = CliOperationArgs::default();
let first_page_required_set = method
.dropshot_paginated
.as_ref()
.map(|d| &d.first_page_params);
for param in &method.params {
let innately_required = match &param.kind {
// We're not interetested in the body parameter yet.
OperationParameterKind::Body(_) => continue,
OperationParameterKind::Path => true,
OperationParameterKind::Query(required) => *required,
OperationParameterKind::Header(required) => *required,
};
// For paginated endpoints, we don't generate 'page_token' args.
if method.dropshot_paginated.is_some()
&& param.name.as_str() == "page_token"
{
continue;
}
let first_page_required = first_page_required_set
.map_or(false, |required| required.contains(&param.api_name));
let volitionality = if innately_required || first_page_required {
Volitionality::Required
} else {
Volitionality::Optional
};
2023-08-25 22:15:28 +00:00
let OperationParameterType::Type(arg_type_id) = &param.typ else {
unreachable!("query and path parameters must be typed")
};
let arg_type = self.type_space.get_type(arg_type_id).unwrap();
let arg_name = param.name.to_kebab_case();
// There should be no conflicting path or query parameters.
assert!(!args.has_arg(&arg_name));
let parser = clap_arg(
&arg_name,
volitionality,
&param.description,
&arg_type,
);
let arg_fn_name = sanitize(&param.name, Case::Snake);
let arg_fn = format_ident!("{}", arg_fn_name);
let OperationParameterType::Type(arg_type_id) = &param.typ else {
2023-08-25 22:15:28 +00:00
panic!()
};
let arg_type = self.type_space.get_type(arg_type_id).unwrap();
let arg_type_name = arg_type.ident();
let consumer = quote! {
if let Some(value) =
matches.get_one::<#arg_type_name>(#arg_name)
{
// clone here in case the arg type doesn't impl
// From<&T>
request = request.#arg_fn(value.clone());
}
};
args.add_arg(arg_name, CliArg { parser, consumer })
}
let maybe_body_type_id = method
.params
.iter()
.find(|param| {
matches!(&param.kind, OperationParameterKind::Body(_))
})
.and_then(|param| match &param.typ {
// TODO not sure how to deal with raw bodies, but we definitely
// need **some** input so we shouldn't just ignore it... as we
// are currently...
OperationParameterType::RawBody => None,
OperationParameterType::Type(body_type_id) => {
Some(body_type_id)
}
});
if let Some(body_type_id) = maybe_body_type_id {
args.body_present();
let body_type = self.type_space.get_type(body_type_id).unwrap();
let details = body_type.details();
match details {
typify::TypeDetails::Struct(struct_info) => {
for prop_info in struct_info.properties_info() {
self.cli_method_body_arg(&mut args, prop_info)
}
}
_ => {
// If the body is not a struct, we don't know what's
// required or how to generate it
args.body_required()
}
}
}
let parser_args =
args.args.values().map(|CliArg { parser, .. }| parser);
// TODO do this as args we add in.
let body_json_args = (match args.body {
CliBodyArg::None => None,
CliBodyArg::Required => Some(true),
CliBodyArg::Optional => Some(false),
})
.map(|required| {
let help = "Path to a file that contains the full json body.";
quote! {
.arg(
clap::Arg::new("json-body")
.long("json-body")
.value_name("JSON-FILE")
// Required if we can't turn the body into individual
// parameters.
.required(#required)
.value_parser(clap::value_parser!(std::path::PathBuf))
.help(#help)
)
.arg(
clap::Arg::new("json-body-template")
.long("json-body-template")
.action(clap::ArgAction::SetTrue)
.help("XXX")
)
}
});
let parser = quote! {
#(
.arg(#parser_args)
)*
#body_json_args
};
let consumer_args =
args.args.values().map(|CliArg { consumer, .. }| consumer);
let body_json_consumer = maybe_body_type_id.map(|body_type_id| {
let body_type = self.type_space.get_type(body_type_id).unwrap();
let body_type_ident = body_type.ident();
quote! {
if let Some(value) =
matches.get_one::<std::path::PathBuf>("json-body")
{
let body_txt = std::fs::read_to_string(value).unwrap();
let body_value =
serde_json::from_str::<#body_type_ident>(
&body_txt,
)
.unwrap();
request = request.body(body_value);
}
}
});
let consumer = quote! {
#(
#consumer_args
)*
#body_json_consumer
};
CliArg { parser, consumer }
}
fn cli_method_body_arg(
&self,
args: &mut CliOperationArgs,
prop_info: TypeStructPropInfo<'_>,
) {
let TypeStructPropInfo {
name,
description,
required,
type_id,
} = prop_info;
let prop_type = self.type_space.get_type(&type_id).unwrap();
// TODO this is maybe a kludge--not completely sure of the right way to
// handle option types. On one hand, we could want types from this
// interface to never show us Option<T> types--we could let the
// `required` field give us that information. On the other hand, there
// might be Option types that are required ... at least in the JSON
// sense, meaning that we need to include `"foo": null` rather than
// omitting the field. Back to the first hand: is that last point just
// a serde issue rather than an interface one?
let maybe_inner_type =
if let typify::TypeDetails::Option(inner_type_id) =
prop_type.details()
{
let inner_type =
self.type_space.get_type(&inner_type_id).unwrap();
Some(inner_type)
} else {
None
};
let prop_type = if let Some(inner_type) = maybe_inner_type {
inner_type
} else {
prop_type
};
let scalar = prop_type.has_impl(TypeSpaceImpl::FromStr);
if scalar {
let volitionality = if required {
Volitionality::RequiredIfNoBody
} else {
Volitionality::Optional
};
let prop_name = name.to_kebab_case();
let parser = clap_arg(
&prop_name,
volitionality,
&description.map(str::to_string),
&prop_type,
);
let prop_fn = format_ident!("{}", sanitize(name, Case::Snake));
let prop_type_ident = prop_type.ident();
let consumer = quote! {
if let Some(value) =
matches.get_one::<#prop_type_ident>(
#prop_name,
)
{
// clone here in case the arg type
// doesn't impl TryFrom<&T>
request = request.body_map(|body| {
body.#prop_fn(value.clone())
})
}
};
args.add_arg(prop_name, CliArg { parser, consumer })
} else if required {
args.body_required()
}
// Cases
// 1. If the type can be represented as a string, great
//
// 2. If it's a substruct then we can try to glue the names together
// and hope?
//
// 3. enums
// 3.1 simple enums (should be covered by 1 above)
// e.g. enum { A, B }
// args for --a and --b that are in a group
}
2023-03-28 21:54:05 +00:00
}
enum Volitionality {
Optional,
Required,
RequiredIfNoBody,
}
fn clap_arg(
arg_name: &str,
volitionality: Volitionality,
description: &Option<String>,
arg_type: &Type,
) -> TokenStream {
let help = description.as_ref().map(|description| {
quote! {
.help(#description)
}
});
let arg_type_name = arg_type.ident();
// For enums that have **only** simple variants, we do some slightly
// fancier argument handling to expose the possible values. In particular,
// we use clap's `PossibleValuesParser` with each variant converted to a
// string. Then we use TypedValueParser::map to translate that into the
// actual type of the enum.
let maybe_enum_parser =
if let typify::TypeDetails::Enum(e) = arg_type.details() {
let maybe_var_names = e
.variants()
.map(|(var_name, var_details)| {
if let TypeEnumVariant::Simple = var_details {
Some(format_ident!("{}", var_name))
} else {
None
}
})
.collect::<Option<Vec<_>>>();
maybe_var_names.map(|var_names| {
quote! {
clap::builder::TypedValueParser::map(
clap::builder::PossibleValuesParser::new([
#( #arg_type_name :: #var_names.to_string(), )*
]),
|s| #arg_type_name :: try_from(s).unwrap()
)
}
})
} else {
None
};
let value_parser = if let Some(enum_parser) = maybe_enum_parser {
enum_parser
} else {
// Let clap pick a value parser for us. This has the benefit of
// allowing for override implementations. A generated client may
// implement ValueParserFactory for a type to create a custom parser.
quote! {
clap::value_parser!(#arg_type_name)
}
};
let required = match volitionality {
Volitionality::Optional => quote! { .required(false) },
Volitionality::Required => quote! { .required(true) },
Volitionality::RequiredIfNoBody => {
quote! { .required_unless_present("json-body") }
}
};
quote! {
clap::Arg::new(#arg_name)
.long(#arg_name)
.value_parser(#value_parser)
#required
#help
}
}
#[derive(Debug)]
struct CliArg {
/// Code to parse the argument
parser: TokenStream,
/// Code to consume the argument
consumer: TokenStream,
}
#[derive(Debug, Default, PartialEq, Eq)]
enum CliBodyArg {
#[default]
None,
Required,
Optional,
}
#[derive(Default, Debug)]
struct CliOperationArgs {
args: BTreeMap<String, CliArg>,
body: CliBodyArg,
}
impl CliOperationArgs {
fn has_arg(&self, name: &String) -> bool {
self.args.contains_key(name)
}
fn add_arg(&mut self, name: String, arg: CliArg) {
self.args.insert(name, arg);
}
fn body_present(&mut self) {
assert_eq!(self.body, CliBodyArg::None);
self.body = CliBodyArg::Optional;
}
fn body_required(&mut self) {
assert!(
self.body == CliBodyArg::Optional
|| self.body == CliBodyArg::Required
);
self.body = CliBodyArg::Required;
}
}