rust-bitcoin-unsafe-fast/src/util/uint.rs

484 lines
14 KiB
Rust
Raw Normal View History

2014-07-18 13:56:17 +00:00
// Rust Bitcoin Library
// Written in 2014 by
// Andrew Poelstra <apoelstra@wpsoftware.net>
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//
//! # Big unsigned integer types
//!
//! Implementation of a various large-but-fixed sized unsigned integer types.
//! The functions here are designed to be fast.
//!
use std::fmt;
use std::io::IoResult;
use std::num::{Zero, One};
use std::mem::transmute;
use network::serialize::Serializable;
use util::BitArray;
macro_rules! construct_uint(
($name:ident, $n_words:expr) => (
/// Little-endian large integer type
#[repr(C)]
pub struct $name(pub [u64, ..$n_words]);
impl $name {
/// Conversion to u32
#[inline]
pub fn low_u32(&self) -> u32 {
let &$name(ref arr) = self;
arr[0] as u32
}
/// Return the least number of bits needed to represent the number
#[inline]
pub fn bits(&self) -> uint {
let &$name(ref arr) = self;
for i in range(1u, $n_words) {
if arr[$n_words - i] > 0 { return (0x40 * ($n_words - i + 1)) - arr[$n_words - i].leading_zeros() as uint; }
}
0x40 - arr[0].leading_zeros() as uint
}
/// Multiplication by u32
pub fn mul_u32(&self, other: u32) -> $name {
let &$name(ref arr) = self;
let mut carry = [0u64, ..$n_words];
let mut ret = [0u64, ..$n_words];
for i in range(0u, $n_words) {
let upper = other as u64 * (arr[i] >> 32);
let lower = other as u64 * (arr[i] & 0xFFFFFFFF);
if i < 3 {
carry[i + 1] += upper >> 32;
}
ret[i] = lower + (upper << 32);
}
$name(ret) + $name(carry)
}
}
impl FromPrimitive for $name {
#[inline]
fn from_u64(init: u64) -> Option<$name> {
let mut ret = [0, ..$n_words];
ret[0] = init;
Some($name(ret))
}
#[inline]
fn from_i64(init: i64) -> Option<$name> {
FromPrimitive::from_u64(init as u64)
}
}
impl Zero for $name {
fn zero() -> $name { $name([0, ..$n_words]) }
fn is_zero(&self) -> bool { *self == Zero::zero() }
}
impl One for $name {
fn one() -> $name {
$name({ let mut ret = [0, ..$n_words]; ret[0] = 1; ret })
}
}
impl Add<$name,$name> for $name {
fn add(&self, other: &$name) -> $name {
let &$name(ref me) = self;
let &$name(ref you) = other;
let mut ret = [0u64, ..$n_words];
let mut carry = [0u64, ..$n_words];
let mut b_carry = false;
for i in range(0u, $n_words) {
ret[i] = me[i] + you[i];
if i < $n_words - 1 && ret[i] < me[i] {
carry[i + 1] = 1;
b_carry = true;
}
}
if b_carry { $name(ret) + $name(carry) } else { $name(ret) }
}
}
impl Sub<$name,$name> for $name {
#[inline]
fn sub(&self, other: &$name) -> $name {
*self + !*other + One::one()
}
}
impl Mul<$name,$name> for $name {
fn mul(&self, other: &$name) -> $name {
let mut me = *self;
// TODO: be more efficient about this
for i in range(0u, 2 * $n_words) {
me = me + me.mul_u32((other >> (32 * i)).low_u32()) << (32 * i);
}
me
}
}
impl Div<$name,$name> for $name {
fn div(&self, other: &$name) -> $name {
let mut sub_copy = *self;
let mut shift_copy = *other;
let mut ret = [0u64, ..$n_words];
let my_bits = self.bits();
let your_bits = other.bits();
// Check for division by 0
assert!(your_bits != 0);
// Early return in case we are dividing by a larger number than us
if my_bits < your_bits {
return $name(ret);
}
// Bitwise long division
let mut shift = my_bits - your_bits;
shift_copy = shift_copy << shift;
loop {
if sub_copy >= shift_copy {
ret[shift / 64] |= 1 << (shift % 64);
sub_copy = sub_copy.sub(&shift_copy);
}
shift_copy = shift_copy >> 1;
if shift == 0 { break; }
shift -= 1;
}
$name(ret)
}
}
impl BitArray for $name {
#[inline]
fn bit(&self, index: uint) -> bool {
let &$name(ref arr) = self;
arr[index / 64] & (1 << (index % 64)) != 0
}
#[inline]
fn bit_slice(&self, start: uint, end: uint) -> $name {
(self >> start).mask(end - start)
}
#[inline]
fn mask(&self, n: uint) -> $name {
let &$name(ref arr) = self;
let mut ret = [0, ..$n_words];
for i in range(0u, $n_words) {
if n >= 0x40 * (i + 1) {
ret[i] = arr[i];
} else {
ret[i] = arr[i] & ((1 << (n - 0x40 * i)) - 1);
break;
}
}
$name(ret)
}
#[inline]
fn trailing_zeros(&self) -> uint {
let &$name(ref arr) = self;
for i in range(0u, $n_words - 1) {
if arr[i] > 0 { return (0x40 * i) + arr[i].trailing_zeros() as uint; }
}
(0x40 * ($n_words - 1)) + arr[3].trailing_zeros() as uint
}
}
impl BitAnd<$name,$name> for $name {
#[inline]
fn bitand(&self, other: &$name) -> $name {
let &$name(ref arr1) = self;
let &$name(ref arr2) = other;
let mut ret = [0u64, ..$n_words];
for i in range(0u, $n_words) {
ret[i] = arr1[i] & arr2[i];
}
$name(ret)
}
}
impl BitXor<$name,$name> for $name {
#[inline]
fn bitxor(&self, other: &$name) -> $name {
let &$name(ref arr1) = self;
let &$name(ref arr2) = other;
let mut ret = [0u64, ..$n_words];
for i in range(0u, $n_words) {
ret[i] = arr1[i] ^ arr2[i];
}
$name(ret)
}
}
impl BitOr<$name,$name> for $name {
#[inline]
fn bitor(&self, other: &$name) -> $name {
let &$name(ref arr1) = self;
let &$name(ref arr2) = other;
let mut ret = [0u64, ..$n_words];
for i in range(0u, $n_words) {
ret[i] = arr1[i] | arr2[i];
}
$name(ret)
}
}
impl Not<$name> for $name {
#[inline]
fn not(&self) -> $name {
let &$name(ref arr) = self;
let mut ret = [0u64, ..$n_words];
for i in range(0u, $n_words) {
ret[i] = !arr[i];
}
$name(ret)
}
}
impl Shl<uint,$name> for $name {
fn shl(&self, shift: &uint) -> $name {
let &$name(ref original) = self;
let mut ret = [0u64, ..$n_words];
let word_shift = *shift / 64;
let bit_shift = *shift % 64;
for i in range(0u, $n_words) {
// Shift
if bit_shift < 64 && i + word_shift < $n_words {
ret[i + word_shift] += original[i] << bit_shift;
}
// Carry
if bit_shift > 0 && i + word_shift + 1 < $n_words {
ret[i + word_shift + 1] += original[i] >> (64 - bit_shift);
}
}
$name(ret)
}
}
impl Shr<uint,$name> for $name {
#[allow(unsigned_negate)]
fn shr(&self, shift: &uint) -> $name {
let &$name(ref original) = self;
let mut ret = [0u64, ..$n_words];
let word_shift = *shift / 64;
let bit_shift = *shift % 64;
for i in range(0u, $n_words) {
// Shift
if bit_shift < 64 && i - word_shift < $n_words {
ret[i - word_shift] += original[i] >> bit_shift;
}
// Carry
if bit_shift > 0 && i - word_shift - 1 < $n_words {
ret[i - word_shift - 1] += original[i] << (64 - bit_shift);
}
}
$name(ret)
}
}
impl PartialEq for $name {
fn eq(&self, other: &$name) -> bool {
let &$name(ref arr1) = self;
let &$name(ref arr2) = other;
for i in range(0, $n_words) {
if arr1[i] != arr2[i] { return false; }
}
return true;
}
}
impl Eq for $name {}
impl Ord for $name {
fn cmp(&self, other: &$name) -> Ordering {
let &$name(ref me) = self;
let &$name(ref you) = other;
for i in range(0, $n_words) {
if me[3 - i] < you[3 - i] { return Less; }
if me[3 - i] > you[3 - i] { return Greater; }
}
return Equal;
}
}
impl PartialOrd for $name {
fn partial_cmp(&self, other: &$name) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl fmt::Show for $name {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.serialize().as_slice())
}
}
impl Serializable for $name {
fn serialize(&self) -> Vec<u8> {
let vec = unsafe { transmute::<$name, [u8, ..($n_words*8)]>(*self) };
vec.serialize()
}
fn deserialize<I: Iterator<u8>>(mut iter: I) -> IoResult<$name> {
let ret: [u8, ..($n_words*8)] = try!(Serializable::deserialize(iter.by_ref()));
Ok(unsafe { transmute(ret) })
}
}
);
)
construct_uint!(Uint256, 4)
construct_uint!(Uint128, 2)
impl Uint256 {
/// Increment by 1
#[inline]
pub fn increment(&mut self) {
let &Uint256(ref mut arr) = self;
arr[0] += 1;
if arr[0] == 0 {
arr[1] += 1;
if arr[1] == 0 {
arr[2] += 1;
if arr[2] == 0 {
arr[3] += 1;
}
}
}
}
}
#[cfg(test)]
mod tests {
use std::io::IoResult;
use std::num::from_u64;
use network::serialize::Serializable;
use util::uint::Uint256;
use util::BitArray;
#[test]
pub fn uint256_bits_test() {
assert_eq!(from_u64::<Uint256>(255).unwrap().bits(), 8);
assert_eq!(from_u64::<Uint256>(256).unwrap().bits(), 9);
assert_eq!(from_u64::<Uint256>(300).unwrap().bits(), 9);
assert_eq!(from_u64::<Uint256>(60000).unwrap().bits(), 16);
assert_eq!(from_u64::<Uint256>(70000).unwrap().bits(), 17);
// Try to read the following lines out loud quickly
let mut shl: Uint256 = from_u64(70000).unwrap();
shl = shl << 100u;
assert_eq!(shl.bits(), 117);
shl = shl << 100u;
assert_eq!(shl.bits(), 217);
shl = shl << 100u;
assert_eq!(shl.bits(), 0);
// Bit set check
assert!(!from_u64::<Uint256>(10).unwrap().bit(0));
assert!(from_u64::<Uint256>(10).unwrap().bit(1));
assert!(!from_u64::<Uint256>(10).unwrap().bit(2));
assert!(from_u64::<Uint256>(10).unwrap().bit(3));
assert!(!from_u64::<Uint256>(10).unwrap().bit(4));
}
#[test]
pub fn uint256_comp_test() {
let small = Uint256([10u64, 0, 0, 0]);
let big = Uint256([0x8C8C3EE70C644118u64, 0x0209E7378231E632, 0, 0]);
let bigger = Uint256([0x9C8C3EE70C644118u64, 0x0209E7378231E632, 0, 0]);
let biggest = Uint256([0x5C8C3EE70C644118u64, 0x0209E7378231E632, 0, 1]);
assert!(small < big);
assert!(big < bigger);
assert!(bigger < biggest);
assert!(bigger <= biggest);
assert!(biggest <= biggest);
assert!(bigger >= big);
assert!(bigger >= small);
assert!(small <= small);
}
#[test]
pub fn uint256_arithmetic_test() {
let init: Uint256 = from_u64(0xDEADBEEFDEADBEEF).unwrap();
let copy = init;
let add = init.add(&copy);
assert_eq!(add, Uint256([0xBD5B7DDFBD5B7DDEu64, 1, 0, 0]));
// Bitshifts
let shl = add << 88u;
assert_eq!(shl, Uint256([0u64, 0xDFBD5B7DDE000000, 0x1BD5B7D, 0]));
let shr = shl >> 40u;
assert_eq!(shr, Uint256([0x7DDE000000000000u64, 0x0001BD5B7DDFBD5B, 0, 0]));
// Increment
let mut incr = shr;
incr.increment();
assert_eq!(incr, Uint256([0x7DDE000000000001u64, 0x0001BD5B7DDFBD5B, 0, 0]));
// Subtraction
let sub = incr.sub(&init);
assert_eq!(sub, Uint256([0x9F30411021524112u64, 0x0001BD5B7DDFBD5A, 0, 0]));
// Multiplication
let mult = sub.mul_u32(300);
assert_eq!(mult, Uint256([0x8C8C3EE70C644118u64, 0x0209E7378231E632, 0, 0]));
// Division
assert_eq!(from_u64::<Uint256>(105).unwrap() /
from_u64::<Uint256>(5).unwrap(),
from_u64::<Uint256>(21).unwrap());
let div = mult / from_u64::<Uint256>(300).unwrap();
assert_eq!(div, Uint256([0x9F30411021524112u64, 0x0001BD5B7DDFBD5A, 0, 0]));
// TODO: bit inversion
}
#[test]
pub fn uint256_bitslice_test() {
let init = from_u64::<Uint256>(0xDEADBEEFDEADBEEF).unwrap();
let add = init + (init << 64);
assert_eq!(add.bit_slice(64, 128), init);
assert_eq!(add.mask(64), init);
}
#[test]
pub fn uint256_extreme_bitshift_test() {
// Shifting a u64 by 64 bits gives an undefined value, so make sure that
// we're doing the Right Thing here
let init = from_u64::<Uint256>(0xDEADBEEFDEADBEEF).unwrap();
assert_eq!(init << 64, Uint256([0, 0xDEADBEEFDEADBEEF, 0, 0]));
let add = (init << 64).add(&init);
assert_eq!(add, Uint256([0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0, 0]));
assert_eq!(add >> 0, Uint256([0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0, 0]));
assert_eq!(add << 0, Uint256([0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0, 0]));
assert_eq!(add >> 64, Uint256([0xDEADBEEFDEADBEEF, 0, 0, 0]));
assert_eq!(add << 64, Uint256([0, 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0]));
}
#[test]
pub fn uint256_serialize_test() {
let start1 = Uint256([0x8C8C3EE70C644118u64, 0x0209E7378231E632, 0, 0]);
let start2 = Uint256([0x8C8C3EE70C644118u64, 0x0209E7378231E632, 0xABCD, 0xFFFF]);
let serial1 = start1.serialize();
let serial2 = start2.serialize();
let end1: IoResult<Uint256> = Serializable::deserialize(serial1.iter().map(|n| *n));
let end2: IoResult<Uint256> = Serializable::deserialize(serial2.iter().map(|n| *n));
assert_eq!(end1, Ok(start1));
assert_eq!(end2, Ok(start2));
}
}