rust-bitcoin-unsafe-fast/io/src/lib.rs

266 lines
9.2 KiB
Rust
Raw Normal View History

//! Rust-Bitcoin IO Library
//!
//! Because the core `std::io` module is not yet exposed in `no-std` Rust, building `no-std`
//! applications which require reading and writing objects via standard traits is not generally
//! possible. While there is ongoing work to improve this situation, this module is not likely to
//! be available for applications with broad rustc version support for some time.
//!
//! Thus, this library exists to export a minmal version of `std::io`'s traits which `no-std`
//! applications may need. With the `std` feature, these traits are also implemented for the
//! `std::io` traits, allowing standard objects to be used wherever the traits from this crate are
//! required.
//!
//! This traits are not one-for-one drop-ins, but are as close as possible while still implementing
//! `std::io`'s traits without unnecessary complexity.
// Experimental features we need.
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![cfg_attr(not(feature = "std"), no_std)]
#[cfg(all(not(feature = "std"), not(feature = "core2")))]
compile_error!("At least one of std or core2 must be enabled");
#[cfg(feature = "std")]
pub use std::error;
#[cfg(not(feature = "std"))]
pub use core2::error;
#[cfg(any(feature = "alloc", feature = "std"))]
extern crate alloc;
/// Standard I/O stream definitions which are API-equivalent to `std`'s `io` module. See
/// [`std::io`] for more info.
pub mod io {
use core::convert::TryInto;
#[cfg(all(not(feature = "std"), not(feature = "core2")))]
compile_error!("At least one of std or core2 must be enabled");
#[cfg(feature = "std")]
pub use std::io::{Error, ErrorKind, Result};
#[cfg(not(feature = "std"))]
pub use core2::io::{Error, ErrorKind, Result};
/// A generic trait describing an input stream. See [`std::io::Read`] for more info.
pub trait Read {
fn read(&mut self, buf: &mut [u8]) -> Result<usize>;
#[inline]
fn read_exact(&mut self, mut buf: &mut [u8]) -> Result<()> {
while !buf.is_empty() {
match self.read(buf) {
Ok(0) => return Err(Error::new(ErrorKind::UnexpectedEof, "")),
Ok(len) => buf = &mut buf[len..],
Err(e) if e.kind() == ErrorKind::Interrupted => {}
Err(e) => return Err(e),
}
}
Ok(())
}
#[inline]
fn take(&mut self, limit: u64) -> Take<Self> {
Take { reader: self, remaining: limit }
}
}
pub struct Take<'a, R: Read + ?Sized> {
reader: &'a mut R,
remaining: u64,
}
impl<'a, R: Read + ?Sized> Read for Take<'a, R> {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
let len = core::cmp::min(buf.len(), self.remaining.try_into().unwrap_or(buf.len()));
let read = self.reader.read(&mut buf[..len])?;
self.remaining -= read.try_into().unwrap_or(self.remaining);
Ok(read)
}
}
#[cfg(feature = "std")]
impl<R: std::io::Read> Read for R {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
<R as std::io::Read>::read(self, buf)
}
}
#[cfg(not(feature = "std"))]
impl Read for &[u8] {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
let cnt = core::cmp::min(self.len(), buf.len());
buf[..cnt].copy_from_slice(&self[..cnt]);
*self = &self[cnt..];
Ok(cnt)
}
}
pub struct Cursor<T> {
inner: T,
pos: u64,
}
impl<T: AsRef<[u8]>> Cursor<T> {
#[inline]
pub fn new(inner: T) -> Self {
Cursor { inner, pos: 0 }
}
#[inline]
pub fn position(&self) -> u64 {
self.pos
}
#[inline]
pub fn into_inner(self) -> T {
self.inner
}
}
impl<T: AsRef<[u8]>> Read for Cursor<T> {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
let inner: &[u8] = self.inner.as_ref();
let start_pos = self.pos.try_into().unwrap_or(inner.len());
let read = core::cmp::min(inner.len().saturating_sub(start_pos), buf.len());
buf[..read].copy_from_slice(&inner[start_pos..start_pos + read]);
self.pos = self.pos.saturating_add(read.try_into().unwrap_or(u64::max_value() /* unreachable */));
Ok(read)
}
}
/// A generic trait describing an output stream. See [`std::io::Write`] for more info.
pub trait Write {
fn write(&mut self, buf: &[u8]) -> Result<usize>;
fn flush(&mut self) -> Result<()>;
#[inline]
fn write_all(&mut self, mut buf: &[u8]) -> Result<()> {
while !buf.is_empty() {
match self.write(buf) {
Ok(0) => return Err(Error::new(ErrorKind::UnexpectedEof, "")),
Ok(len) => buf = &buf[len..],
Err(e) if e.kind() == ErrorKind::Interrupted => {}
Err(e) => return Err(e),
}
}
Ok(())
}
}
#[cfg(feature = "std")]
impl<W: std::io::Write> Write for W {
#[inline]
fn write(&mut self, buf: &[u8]) -> Result<usize> {
<W as std::io::Write>::write(self, buf)
}
#[inline]
fn flush(&mut self) -> Result<()> {
<W as std::io::Write>::flush(self)
}
}
#[cfg(all(feature = "alloc", not(feature = "std")))]
impl Write for alloc::vec::Vec<u8> {
#[inline]
fn write(&mut self, buf: &[u8]) -> Result<usize> {
self.extend_from_slice(buf);
Ok(buf.len())
}
#[inline]
fn flush(&mut self) -> Result<()> { Ok(()) }
}
#[cfg(not(feature = "std"))]
impl<'a> Write for &'a mut [u8] {
#[inline]
fn write(&mut self, buf: &[u8]) -> Result<usize> {
let cnt = core::cmp::min(self.len(), buf.len());
self[..cnt].copy_from_slice(&buf[..cnt]);
*self = &mut core::mem::take(self)[cnt..];
Ok(cnt)
}
#[inline]
fn flush(&mut self) -> Result<()> { Ok(()) }
}
/// A sink to which all writes succeed. See [`std::io::Sink`] for more info.
pub struct Sink;
#[cfg(not(feature = "std"))]
impl Write for Sink {
#[inline]
fn write(&mut self, buf: &[u8]) -> Result<usize> {
Ok(buf.len())
}
#[inline]
fn write_all(&mut self, _: &[u8]) -> Result<()> { Ok(()) }
#[inline]
fn flush(&mut self) -> Result<()> { Ok(()) }
}
#[cfg(feature = "std")]
impl std::io::Write for Sink {
#[inline]
fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
Ok(buf.len())
}
#[inline]
fn write_all(&mut self, _: &[u8]) -> std::io::Result<()> { Ok(()) }
#[inline]
fn flush(&mut self) -> std::io::Result<()> { Ok(()) }
}
/// Returns a sink to which all writes succeed. See [`std::io::sink`] for more info.
pub fn sink() -> Sink { Sink }
}
#[doc(hidden)]
#[cfg(feature = "std")]
/// Re-export std for the below macro
pub use std as _std;
#[macro_export]
/// Because we cannot provide a blanket implementation of [`std::io::Write`] for all implementers
/// of this crate's `io::Write` trait, we provide this macro instead.
///
/// This macro will implement `Write` given a `write` and `flush` fn, either by implementing the
/// crate's native `io::Write` trait directly, or a more generic trait from `std` for users using
/// that feature. In any case, this crate's `io::Write` feature will be implemented for the given
/// type, even if indirectly.
#[cfg(not(feature = "std"))]
macro_rules! impl_write {
($ty: ty, $write_fn: expr, $flush_fn: expr $(, $bounded_ty: ident : $bounds: path),*) => {
impl<$($bounded_ty: $bounds),*> $crate::io::Write for $ty {
#[inline]
fn write(&mut self, buf: &[u8]) -> $crate::io::Result<usize> {
$write_fn(self, buf)
}
#[inline]
fn flush(&mut self) -> $crate::io::Result<()> {
$flush_fn(self)
}
}
}
}
#[macro_export]
/// Because we cannot provide a blanket implementation of [`std::io::Write`] for all implementers
/// of this crate's `io::Write` trait, we provide this macro instead.
///
/// This macro will implement `Write` given a `write` and `flush` fn, either by implementing the
/// crate's native `io::Write` trait directly, or a more generic trait from `std` for users using
/// that feature. In any case, this crate's `io::Write` feature will be implemented for the given
/// type, even if indirectly.
#[cfg(feature = "std")]
macro_rules! impl_write {
($ty: ty, $write_fn: expr, $flush_fn: expr $(, $bounded_ty: ident : $bounds: path),*) => {
impl<$($bounded_ty: $bounds),*> $crate::_std::io::Write for $ty {
#[inline]
fn write(&mut self, buf: &[u8]) -> $crate::_std::io::Result<usize> {
$write_fn(self, buf)
}
#[inline]
fn flush(&mut self) -> $crate::_std::io::Result<()> {
$flush_fn(self)
}
}
}
}