2158 lines
86 KiB
Rust
2158 lines
86 KiB
Rust
// SPDX-License-Identifier: CC0-1.0
|
|
|
|
//! Signature hash implementation (used in transaction signing).
|
|
//!
|
|
//! Efficient implementation of the algorithm to compute the message to be signed according to
|
|
//! [Bip341](https://github.com/bitcoin/bips/blob/150ab6f5c3aca9da05fccc5b435e9667853407f4/bip-0341.mediawiki),
|
|
//! [Bip143](https://github.com/bitcoin/bips/blob/99701f68a88ce33b2d0838eb84e115cef505b4c2/bip-0143.mediawiki)
|
|
//! and legacy (before Bip143).
|
|
//!
|
|
//! Computing signature hashes is required to sign a transaction and this module is designed to
|
|
//! handle its complexity efficiently. Computing these hashes is as simple as creating
|
|
//! [`SighashCache`] and calling its methods.
|
|
|
|
use core::{fmt, str};
|
|
|
|
use hashes::{hash_newtype, sha256, sha256d, sha256t_hash_newtype, Hash};
|
|
use internals::write_err;
|
|
use io::Write;
|
|
|
|
use crate::blockdata::witness::Witness;
|
|
use crate::consensus::{encode, Encodable};
|
|
use crate::taproot::{LeafVersion, TapLeafHash, TAPROOT_ANNEX_PREFIX};
|
|
use crate::prelude::*;
|
|
use crate::{transaction, Amount, Script, ScriptBuf, Sequence, Transaction, TxIn, TxOut};
|
|
|
|
/// Used for signature hash for invalid use of SIGHASH_SINGLE.
|
|
#[rustfmt::skip]
|
|
pub(crate) const UINT256_ONE: [u8; 32] = [
|
|
1, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0
|
|
];
|
|
|
|
macro_rules! impl_thirty_two_byte_hash {
|
|
($ty:ident) => {
|
|
impl secp256k1::ThirtyTwoByteHash for $ty {
|
|
fn into_32(self) -> [u8; 32] { self.to_byte_array() }
|
|
}
|
|
};
|
|
}
|
|
|
|
hash_newtype! {
|
|
/// Hash of a transaction according to the legacy signature algorithm.
|
|
#[hash_newtype(forward)]
|
|
pub struct LegacySighash(sha256d::Hash);
|
|
|
|
/// Hash of a transaction according to the segwit version 0 signature algorithm.
|
|
#[hash_newtype(forward)]
|
|
pub struct SegwitV0Sighash(sha256d::Hash);
|
|
}
|
|
|
|
impl_thirty_two_byte_hash!(LegacySighash);
|
|
impl_thirty_two_byte_hash!(SegwitV0Sighash);
|
|
|
|
sha256t_hash_newtype! {
|
|
pub struct TapSighashTag = hash_str("TapSighash");
|
|
|
|
/// Taproot-tagged hash with tag \"TapSighash\".
|
|
///
|
|
/// This hash type is used for computing taproot signature hash."
|
|
#[hash_newtype(forward)]
|
|
pub struct TapSighash(_);
|
|
}
|
|
|
|
impl_thirty_two_byte_hash!(TapSighash);
|
|
|
|
/// Efficiently calculates signature hash message for legacy, segwit and taproot inputs.
|
|
#[derive(Debug)]
|
|
pub struct SighashCache<T: Borrow<Transaction>> {
|
|
/// Access to transaction required for transaction introspection. Moreover, type
|
|
/// `T: Borrow<Transaction>` allows us to use borrowed and mutable borrowed types,
|
|
/// the latter in particular is necessary for [`SighashCache::witness_mut`].
|
|
tx: T,
|
|
|
|
/// Common cache for taproot and segwit inputs, `None` for legacy inputs.
|
|
common_cache: Option<CommonCache>,
|
|
|
|
/// Cache for segwit v0 inputs (the result of another round of sha256 on `common_cache`).
|
|
segwit_cache: Option<SegwitCache>,
|
|
|
|
/// Cache for taproot v1 inputs.
|
|
taproot_cache: Option<TaprootCache>,
|
|
}
|
|
|
|
/// Common values cached between segwit and taproot inputs.
|
|
#[derive(Debug)]
|
|
struct CommonCache {
|
|
prevouts: sha256::Hash,
|
|
sequences: sha256::Hash,
|
|
|
|
/// In theory `outputs` could be an `Option` since `SIGHASH_NONE` and `SIGHASH_SINGLE` do not
|
|
/// need it, but since `SIGHASH_ALL` is by far the most used variant we don't bother.
|
|
outputs: sha256::Hash,
|
|
}
|
|
|
|
/// Values cached for segwit inputs, equivalent to [`CommonCache`] plus another round of `sha256`.
|
|
#[derive(Debug)]
|
|
struct SegwitCache {
|
|
prevouts: sha256d::Hash,
|
|
sequences: sha256d::Hash,
|
|
outputs: sha256d::Hash,
|
|
}
|
|
|
|
/// Values cached for taproot inputs.
|
|
#[derive(Debug)]
|
|
struct TaprootCache {
|
|
amounts: sha256::Hash,
|
|
script_pubkeys: sha256::Hash,
|
|
}
|
|
|
|
/// Contains outputs of previous transactions. In the case [`TapSighashType`] variant is
|
|
/// `SIGHASH_ANYONECANPAY`, [`Prevouts::One`] may be used.
|
|
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
|
|
pub enum Prevouts<'u, T>
|
|
where
|
|
T: 'u + Borrow<TxOut>,
|
|
{
|
|
/// `One` variant allows provision of the single prevout needed. It's useful, for example, when
|
|
/// modifier `SIGHASH_ANYONECANPAY` is provided, only prevout of the current input is needed.
|
|
/// The first `usize` argument is the input index this [`TxOut`] is referring to.
|
|
One(usize, T),
|
|
/// When `SIGHASH_ANYONECANPAY` is not provided, or when the caller is giving all prevouts so
|
|
/// the same variable can be used for multiple inputs.
|
|
All(&'u [T]),
|
|
}
|
|
|
|
const KEY_VERSION_0: u8 = 0u8;
|
|
|
|
/// Information related to the script path spending.
|
|
///
|
|
/// This can be hashed into a [`TapLeafHash`].
|
|
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
|
|
pub struct ScriptPath<'s> {
|
|
script: &'s Script,
|
|
leaf_version: LeafVersion,
|
|
}
|
|
|
|
/// Hashtype of an input's signature, encoded in the last byte of the signature.
|
|
/// Fixed values so they can be cast as integer types for encoding.
|
|
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
|
|
pub enum TapSighashType {
|
|
/// 0x0: Used when not explicitly specified, defaults to [`TapSighashType::All`]
|
|
Default = 0x00,
|
|
/// 0x1: Sign all outputs.
|
|
All = 0x01,
|
|
/// 0x2: Sign no outputs --- anyone can choose the destination.
|
|
None = 0x02,
|
|
/// 0x3: Sign the output whose index matches this input's index. If none exists,
|
|
/// sign the hash `0000000000000000000000000000000000000000000000000000000000000001`.
|
|
/// (This rule is probably an unintentional C++ism, but it's consensus so we have
|
|
/// to follow it.)
|
|
Single = 0x03,
|
|
/// 0x81: Sign all outputs but only this input.
|
|
AllPlusAnyoneCanPay = 0x81,
|
|
/// 0x82: Sign no outputs and only this input.
|
|
NonePlusAnyoneCanPay = 0x82,
|
|
/// 0x83: Sign one output and only this input (see `Single` for what "one output" means).
|
|
SinglePlusAnyoneCanPay = 0x83,
|
|
}
|
|
#[cfg(feature = "serde")]
|
|
crate::serde_utils::serde_string_impl!(TapSighashType, "a TapSighashType data");
|
|
|
|
impl fmt::Display for TapSighashType {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
use TapSighashType::*;
|
|
|
|
let s = match self {
|
|
Default => "SIGHASH_DEFAULT",
|
|
All => "SIGHASH_ALL",
|
|
None => "SIGHASH_NONE",
|
|
Single => "SIGHASH_SINGLE",
|
|
AllPlusAnyoneCanPay => "SIGHASH_ALL|SIGHASH_ANYONECANPAY",
|
|
NonePlusAnyoneCanPay => "SIGHASH_NONE|SIGHASH_ANYONECANPAY",
|
|
SinglePlusAnyoneCanPay => "SIGHASH_SINGLE|SIGHASH_ANYONECANPAY",
|
|
};
|
|
f.write_str(s)
|
|
}
|
|
}
|
|
|
|
impl str::FromStr for TapSighashType {
|
|
type Err = SighashTypeParseError;
|
|
|
|
fn from_str(s: &str) -> Result<Self, Self::Err> {
|
|
use TapSighashType::*;
|
|
|
|
match s {
|
|
"SIGHASH_DEFAULT" => Ok(Default),
|
|
"SIGHASH_ALL" => Ok(All),
|
|
"SIGHASH_NONE" => Ok(None),
|
|
"SIGHASH_SINGLE" => Ok(Single),
|
|
"SIGHASH_ALL|SIGHASH_ANYONECANPAY" => Ok(AllPlusAnyoneCanPay),
|
|
"SIGHASH_NONE|SIGHASH_ANYONECANPAY" => Ok(NonePlusAnyoneCanPay),
|
|
"SIGHASH_SINGLE|SIGHASH_ANYONECANPAY" => Ok(SinglePlusAnyoneCanPay),
|
|
_ => Err(SighashTypeParseError { unrecognized: s.to_owned() }),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'u, T> Prevouts<'u, T>
|
|
where
|
|
T: Borrow<TxOut>,
|
|
{
|
|
fn check_all(&self, tx: &Transaction) -> Result<(), PrevoutsSizeError> {
|
|
if let Prevouts::All(prevouts) = self {
|
|
if prevouts.len() != tx.input.len() {
|
|
return Err(PrevoutsSizeError);
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn get_all(&self) -> Result<&[T], PrevoutsKindError> {
|
|
match self {
|
|
Prevouts::All(prevouts) => Ok(*prevouts),
|
|
_ => Err(PrevoutsKindError),
|
|
}
|
|
}
|
|
|
|
fn get(&self, input_index: usize) -> Result<&TxOut, PrevoutsIndexError> {
|
|
match self {
|
|
Prevouts::One(index, prevout) =>
|
|
if input_index == *index {
|
|
Ok(prevout.borrow())
|
|
} else {
|
|
Err(PrevoutsIndexError::InvalidOneIndex)
|
|
},
|
|
Prevouts::All(prevouts) => prevouts
|
|
.get(input_index)
|
|
.map(|x| x.borrow())
|
|
.ok_or(PrevoutsIndexError::InvalidAllIndex),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The number of supplied prevouts differs from the number of inputs in the transaction.
|
|
#[derive(Debug, Clone, PartialEq, Eq)]
|
|
#[non_exhaustive]
|
|
pub struct PrevoutsSizeError;
|
|
|
|
impl fmt::Display for PrevoutsSizeError {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
write!(f, "number of supplied prevouts differs from the number of inputs in transaction")
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "std")]
|
|
impl std::error::Error for PrevoutsSizeError {
|
|
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> { None }
|
|
}
|
|
|
|
/// A single prevout was been provided but all prevouts are needed without `ANYONECANPAY`.
|
|
#[derive(Debug, Clone, PartialEq, Eq)]
|
|
#[non_exhaustive]
|
|
pub struct PrevoutsKindError;
|
|
|
|
impl fmt::Display for PrevoutsKindError {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
write!(f, "single prevout provided but all prevouts are needed without `ANYONECANPAY`")
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "std")]
|
|
impl std::error::Error for PrevoutsKindError {
|
|
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> { None }
|
|
}
|
|
|
|
/// [`Prevouts`] index related errors.
|
|
#[derive(Debug, Clone, PartialEq, Eq)]
|
|
#[non_exhaustive]
|
|
pub enum PrevoutsIndexError {
|
|
/// Invalid index when accessing a [`Prevouts::One`] kind.
|
|
InvalidOneIndex,
|
|
/// Invalid index when accessing a [`Prevouts::All`] kind.
|
|
InvalidAllIndex,
|
|
}
|
|
|
|
internals::impl_from_infallible!(PrevoutsIndexError);
|
|
|
|
impl fmt::Display for PrevoutsIndexError {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
use PrevoutsIndexError::*;
|
|
|
|
match *self {
|
|
InvalidOneIndex => write!(f, "invalid index when accessing a Prevouts::One kind"),
|
|
InvalidAllIndex => write!(f, "invalid index when accessing a Prevouts::All kind"),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "std")]
|
|
impl std::error::Error for PrevoutsIndexError {
|
|
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
|
|
use PrevoutsIndexError::*;
|
|
|
|
match *self {
|
|
InvalidOneIndex | InvalidAllIndex => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'s> ScriptPath<'s> {
|
|
/// Creates a new `ScriptPath` structure.
|
|
pub fn new(script: &'s Script, leaf_version: LeafVersion) -> Self {
|
|
ScriptPath { script, leaf_version }
|
|
}
|
|
/// Creates a new `ScriptPath` structure using default leaf version value.
|
|
pub fn with_defaults(script: &'s Script) -> Self { Self::new(script, LeafVersion::TapScript) }
|
|
/// Computes the leaf hash for this `ScriptPath`.
|
|
pub fn leaf_hash(&self) -> TapLeafHash {
|
|
let mut enc = TapLeafHash::engine();
|
|
|
|
self.leaf_version
|
|
.to_consensus()
|
|
.consensus_encode(&mut enc)
|
|
.expect("writing to hash enging should never fail");
|
|
self.script.consensus_encode(&mut enc).expect("writing to hash enging should never fail");
|
|
|
|
TapLeafHash::from_engine(enc)
|
|
}
|
|
}
|
|
|
|
impl<'s> From<ScriptPath<'s>> for TapLeafHash {
|
|
fn from(script_path: ScriptPath<'s>) -> TapLeafHash { script_path.leaf_hash() }
|
|
}
|
|
|
|
/// Hashtype of an input's signature, encoded in the last byte of the signature.
|
|
///
|
|
/// Fixed values so they can be cast as integer types for encoding (see also
|
|
/// [`TapSighashType`]).
|
|
#[derive(PartialEq, Eq, Debug, Copy, Clone, Hash)]
|
|
pub enum EcdsaSighashType {
|
|
/// 0x1: Sign all outputs.
|
|
All = 0x01,
|
|
/// 0x2: Sign no outputs --- anyone can choose the destination.
|
|
None = 0x02,
|
|
/// 0x3: Sign the output whose index matches this input's index. If none exists,
|
|
/// sign the hash `0000000000000000000000000000000000000000000000000000000000000001`.
|
|
/// (This rule is probably an unintentional C++ism, but it's consensus so we have
|
|
/// to follow it.)
|
|
Single = 0x03,
|
|
/// 0x81: Sign all outputs but only this input.
|
|
AllPlusAnyoneCanPay = 0x81,
|
|
/// 0x82: Sign no outputs and only this input.
|
|
NonePlusAnyoneCanPay = 0x82,
|
|
/// 0x83: Sign one output and only this input (see `Single` for what "one output" means).
|
|
SinglePlusAnyoneCanPay = 0x83,
|
|
}
|
|
#[cfg(feature = "serde")]
|
|
crate::serde_utils::serde_string_impl!(EcdsaSighashType, "a EcdsaSighashType data");
|
|
|
|
impl fmt::Display for EcdsaSighashType {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
use EcdsaSighashType::*;
|
|
|
|
let s = match self {
|
|
All => "SIGHASH_ALL",
|
|
None => "SIGHASH_NONE",
|
|
Single => "SIGHASH_SINGLE",
|
|
AllPlusAnyoneCanPay => "SIGHASH_ALL|SIGHASH_ANYONECANPAY",
|
|
NonePlusAnyoneCanPay => "SIGHASH_NONE|SIGHASH_ANYONECANPAY",
|
|
SinglePlusAnyoneCanPay => "SIGHASH_SINGLE|SIGHASH_ANYONECANPAY",
|
|
};
|
|
f.write_str(s)
|
|
}
|
|
}
|
|
|
|
impl str::FromStr for EcdsaSighashType {
|
|
type Err = SighashTypeParseError;
|
|
|
|
fn from_str(s: &str) -> Result<Self, Self::Err> {
|
|
use EcdsaSighashType::*;
|
|
|
|
match s {
|
|
"SIGHASH_ALL" => Ok(All),
|
|
"SIGHASH_NONE" => Ok(None),
|
|
"SIGHASH_SINGLE" => Ok(Single),
|
|
"SIGHASH_ALL|SIGHASH_ANYONECANPAY" => Ok(AllPlusAnyoneCanPay),
|
|
"SIGHASH_NONE|SIGHASH_ANYONECANPAY" => Ok(NonePlusAnyoneCanPay),
|
|
"SIGHASH_SINGLE|SIGHASH_ANYONECANPAY" => Ok(SinglePlusAnyoneCanPay),
|
|
_ => Err(SighashTypeParseError { unrecognized: s.to_owned() }),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl EcdsaSighashType {
|
|
/// Splits the sighash flag into the "real" sighash flag and the ANYONECANPAY boolean.
|
|
pub(crate) fn split_anyonecanpay_flag(self) -> (EcdsaSighashType, bool) {
|
|
use EcdsaSighashType::*;
|
|
|
|
match self {
|
|
All => (All, false),
|
|
None => (None, false),
|
|
Single => (Single, false),
|
|
AllPlusAnyoneCanPay => (All, true),
|
|
NonePlusAnyoneCanPay => (None, true),
|
|
SinglePlusAnyoneCanPay => (Single, true),
|
|
}
|
|
}
|
|
|
|
/// Creates a [`EcdsaSighashType`] from a raw `u32`.
|
|
///
|
|
/// **Note**: this replicates consensus behaviour, for current standardness rules correctness
|
|
/// you probably want [`Self::from_standard`].
|
|
///
|
|
/// This might cause unexpected behavior because it does not roundtrip. That is,
|
|
/// `EcdsaSighashType::from_consensus(n) as u32 != n` for non-standard values of `n`. While
|
|
/// verifying signatures, the user should retain the `n` and use it compute the signature hash
|
|
/// message.
|
|
pub fn from_consensus(n: u32) -> EcdsaSighashType {
|
|
use EcdsaSighashType::*;
|
|
|
|
// In Bitcoin Core, the SignatureHash function will mask the (int32) value with
|
|
// 0x1f to (apparently) deactivate ACP when checking for SINGLE and NONE bits.
|
|
// We however want to be matching also against on ACP-masked ALL, SINGLE, and NONE.
|
|
// So here we re-activate ACP.
|
|
let mask = 0x1f | 0x80;
|
|
match n & mask {
|
|
// "real" sighashes
|
|
0x01 => All,
|
|
0x02 => None,
|
|
0x03 => Single,
|
|
0x81 => AllPlusAnyoneCanPay,
|
|
0x82 => NonePlusAnyoneCanPay,
|
|
0x83 => SinglePlusAnyoneCanPay,
|
|
// catchalls
|
|
x if x & 0x80 == 0x80 => AllPlusAnyoneCanPay,
|
|
_ => All,
|
|
}
|
|
}
|
|
|
|
/// Creates a [`EcdsaSighashType`] from a raw `u32`.
|
|
///
|
|
/// # Errors
|
|
///
|
|
/// If `n` is a non-standard sighash value.
|
|
pub fn from_standard(n: u32) -> Result<EcdsaSighashType, NonStandardSighashTypeError> {
|
|
use EcdsaSighashType::*;
|
|
|
|
match n {
|
|
// Standard sighashes, see https://github.com/bitcoin/bitcoin/blob/b805dbb0b9c90dadef0424e5b3bf86ac308e103e/src/script/interpreter.cpp#L189-L198
|
|
0x01 => Ok(All),
|
|
0x02 => Ok(None),
|
|
0x03 => Ok(Single),
|
|
0x81 => Ok(AllPlusAnyoneCanPay),
|
|
0x82 => Ok(NonePlusAnyoneCanPay),
|
|
0x83 => Ok(SinglePlusAnyoneCanPay),
|
|
non_standard => Err(NonStandardSighashTypeError(non_standard)),
|
|
}
|
|
}
|
|
|
|
/// Converts [`EcdsaSighashType`] to a `u32` sighash flag.
|
|
///
|
|
/// The returned value is guaranteed to be a valid according to standardness rules.
|
|
pub fn to_u32(self) -> u32 { self as u32 }
|
|
}
|
|
|
|
impl From<EcdsaSighashType> for TapSighashType {
|
|
fn from(s: EcdsaSighashType) -> Self {
|
|
use TapSighashType::*;
|
|
|
|
match s {
|
|
EcdsaSighashType::All => All,
|
|
EcdsaSighashType::None => None,
|
|
EcdsaSighashType::Single => Single,
|
|
EcdsaSighashType::AllPlusAnyoneCanPay => AllPlusAnyoneCanPay,
|
|
EcdsaSighashType::NonePlusAnyoneCanPay => NonePlusAnyoneCanPay,
|
|
EcdsaSighashType::SinglePlusAnyoneCanPay => SinglePlusAnyoneCanPay,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl TapSighashType {
|
|
/// Breaks the sighash flag into the "real" sighash flag and the `SIGHASH_ANYONECANPAY` boolean.
|
|
pub(crate) fn split_anyonecanpay_flag(self) -> (TapSighashType, bool) {
|
|
use TapSighashType::*;
|
|
|
|
match self {
|
|
Default => (Default, false),
|
|
All => (All, false),
|
|
None => (None, false),
|
|
Single => (Single, false),
|
|
AllPlusAnyoneCanPay => (All, true),
|
|
NonePlusAnyoneCanPay => (None, true),
|
|
SinglePlusAnyoneCanPay => (Single, true),
|
|
}
|
|
}
|
|
|
|
/// Constructs a [`TapSighashType`] from a raw `u8`.
|
|
pub fn from_consensus_u8(sighash_type: u8) -> Result<Self, InvalidSighashTypeError> {
|
|
use TapSighashType::*;
|
|
|
|
Ok(match sighash_type {
|
|
0x00 => Default,
|
|
0x01 => All,
|
|
0x02 => None,
|
|
0x03 => Single,
|
|
0x81 => AllPlusAnyoneCanPay,
|
|
0x82 => NonePlusAnyoneCanPay,
|
|
0x83 => SinglePlusAnyoneCanPay,
|
|
x => return Err(InvalidSighashTypeError(x.into())),
|
|
})
|
|
}
|
|
}
|
|
|
|
/// Integer is not a consensus valid sighash type.
|
|
#[derive(Debug, Clone, PartialEq, Eq)]
|
|
pub struct InvalidSighashTypeError(pub u32);
|
|
|
|
impl fmt::Display for InvalidSighashTypeError {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(f, "invalid sighash type {}", self.0)
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "std")]
|
|
impl std::error::Error for InvalidSighashTypeError {
|
|
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> { None }
|
|
}
|
|
|
|
/// This type is consensus valid but an input including it would prevent the transaction from
|
|
/// being relayed on today's Bitcoin network.
|
|
#[derive(Debug, Clone, PartialEq, Eq)]
|
|
pub struct NonStandardSighashTypeError(pub u32);
|
|
|
|
impl fmt::Display for NonStandardSighashTypeError {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(f, "non-standard sighash type {}", self.0)
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "std")]
|
|
impl std::error::Error for NonStandardSighashTypeError {
|
|
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> { None }
|
|
}
|
|
|
|
/// Error returned for failure during parsing one of the sighash types.
|
|
///
|
|
/// This is currently returned for unrecognized sighash strings.
|
|
#[derive(Debug, Clone, PartialEq, Eq)]
|
|
#[non_exhaustive]
|
|
pub struct SighashTypeParseError {
|
|
/// The unrecognized string we attempted to parse.
|
|
pub unrecognized: String,
|
|
}
|
|
|
|
impl fmt::Display for SighashTypeParseError {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(f, "unrecognized SIGHASH string '{}'", self.unrecognized)
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "std")]
|
|
impl std::error::Error for SighashTypeParseError {
|
|
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> { None }
|
|
}
|
|
|
|
impl<R: Borrow<Transaction>> SighashCache<R> {
|
|
/// Constructs a new `SighashCache` from an unsigned transaction.
|
|
///
|
|
/// The sighash components are computed in a lazy manner when required. For the generated
|
|
/// sighashes to be valid, no fields in the transaction may change except for script_sig and
|
|
/// witness.
|
|
pub fn new(tx: R) -> Self {
|
|
SighashCache { tx, common_cache: None, taproot_cache: None, segwit_cache: None }
|
|
}
|
|
|
|
/// Returns the reference to the cached transaction.
|
|
pub fn transaction(&self) -> &Transaction { self.tx.borrow() }
|
|
|
|
/// Destroys the cache and recovers the stored transaction.
|
|
pub fn into_transaction(self) -> R { self.tx }
|
|
|
|
/// Encodes the BIP341 signing data for any flag type into a given object implementing the
|
|
/// [`io::Write`] trait.
|
|
pub fn taproot_encode_signing_data_to<W: Write + ?Sized, T: Borrow<TxOut>>(
|
|
&mut self,
|
|
writer: &mut W,
|
|
input_index: usize,
|
|
prevouts: &Prevouts<T>,
|
|
annex: Option<Annex>,
|
|
leaf_hash_code_separator: Option<(TapLeafHash, u32)>,
|
|
sighash_type: TapSighashType,
|
|
) -> Result<(), SigningDataError<TaprootError>> {
|
|
prevouts.check_all(self.tx.borrow()).map_err(SigningDataError::sighash)?;
|
|
|
|
let (sighash, anyone_can_pay) = sighash_type.split_anyonecanpay_flag();
|
|
|
|
// epoch
|
|
0u8.consensus_encode(writer)?;
|
|
|
|
// * Control:
|
|
// hash_type (1).
|
|
(sighash_type as u8).consensus_encode(writer)?;
|
|
|
|
// * Transaction Data:
|
|
// nVersion (4): the nVersion of the transaction.
|
|
self.tx.borrow().version.consensus_encode(writer)?;
|
|
|
|
// nLockTime (4): the nLockTime of the transaction.
|
|
self.tx.borrow().lock_time.consensus_encode(writer)?;
|
|
|
|
// If the hash_type & 0x80 does not equal SIGHASH_ANYONECANPAY:
|
|
// sha_prevouts (32): the SHA256 of the serialization of all input outpoints.
|
|
// sha_amounts (32): the SHA256 of the serialization of all spent output amounts.
|
|
// sha_scriptpubkeys (32): the SHA256 of the serialization of all spent output scriptPubKeys.
|
|
// sha_sequences (32): the SHA256 of the serialization of all input nSequence.
|
|
if !anyone_can_pay {
|
|
self.common_cache().prevouts.consensus_encode(writer)?;
|
|
self.taproot_cache(prevouts.get_all().map_err(SigningDataError::sighash)?).amounts.consensus_encode(writer)?;
|
|
self.taproot_cache(prevouts.get_all().map_err(SigningDataError::sighash)?).script_pubkeys.consensus_encode(writer)?;
|
|
self.common_cache().sequences.consensus_encode(writer)?;
|
|
}
|
|
|
|
// If hash_type & 3 does not equal SIGHASH_NONE or SIGHASH_SINGLE:
|
|
// sha_outputs (32): the SHA256 of the serialization of all outputs in CTxOut format.
|
|
if sighash != TapSighashType::None && sighash != TapSighashType::Single {
|
|
self.common_cache().outputs.consensus_encode(writer)?;
|
|
}
|
|
|
|
// * Data about this input:
|
|
// spend_type (1): equal to (ext_flag * 2) + annex_present, where annex_present is 0
|
|
// if no annex is present, or 1 otherwise
|
|
let mut spend_type = 0u8;
|
|
if annex.is_some() {
|
|
spend_type |= 1u8;
|
|
}
|
|
if leaf_hash_code_separator.is_some() {
|
|
spend_type |= 2u8;
|
|
}
|
|
spend_type.consensus_encode(writer)?;
|
|
|
|
// If hash_type & 0x80 equals SIGHASH_ANYONECANPAY:
|
|
// outpoint (36): the COutPoint of this input (32-byte hash + 4-byte little-endian).
|
|
// amount (8): value of the previous output spent by this input.
|
|
// scriptPubKey (35): scriptPubKey of the previous output spent by this input, serialized as script inside CTxOut. Its size is always 35 bytes.
|
|
// nSequence (4): nSequence of this input.
|
|
if anyone_can_pay {
|
|
let txin = &self.tx.borrow().tx_in(input_index).map_err(SigningDataError::sighash)?;
|
|
let previous_output = prevouts.get(input_index).map_err(SigningDataError::sighash)?;
|
|
txin.previous_output.consensus_encode(writer)?;
|
|
previous_output.value.consensus_encode(writer)?;
|
|
previous_output.script_pubkey.consensus_encode(writer)?;
|
|
txin.sequence.consensus_encode(writer)?;
|
|
} else {
|
|
(input_index as u32).consensus_encode(writer)?;
|
|
}
|
|
|
|
// If an annex is present (the lowest bit of spend_type is set):
|
|
// sha_annex (32): the SHA256 of (compact_size(size of annex) || annex), where annex
|
|
// includes the mandatory 0x50 prefix.
|
|
if let Some(annex) = annex {
|
|
let mut enc = sha256::Hash::engine();
|
|
annex.consensus_encode(&mut enc)?;
|
|
let hash = sha256::Hash::from_engine(enc);
|
|
hash.consensus_encode(writer)?;
|
|
}
|
|
|
|
// * Data about this output:
|
|
// If hash_type & 3 equals SIGHASH_SINGLE:
|
|
// sha_single_output (32): the SHA256 of the corresponding output in CTxOut format.
|
|
if sighash == TapSighashType::Single {
|
|
let mut enc = sha256::Hash::engine();
|
|
self.tx
|
|
.borrow()
|
|
.output
|
|
.get(input_index)
|
|
.ok_or(TaprootError::SingleMissingOutput(SingleMissingOutputError {
|
|
input_index,
|
|
outputs_length: self.tx.borrow().output.len(),
|
|
})).map_err(SigningDataError::Sighash)?
|
|
.consensus_encode(&mut enc)?;
|
|
let hash = sha256::Hash::from_engine(enc);
|
|
hash.consensus_encode(writer)?;
|
|
}
|
|
|
|
// if (scriptpath):
|
|
// ss += TaggedHash("TapLeaf", bytes([leaf_ver]) + ser_string(script))
|
|
// ss += bytes([0])
|
|
// ss += struct.pack("<i", codeseparator_pos)
|
|
if let Some((hash, code_separator_pos)) = leaf_hash_code_separator {
|
|
hash.as_byte_array().consensus_encode(writer)?;
|
|
KEY_VERSION_0.consensus_encode(writer)?;
|
|
code_separator_pos.consensus_encode(writer)?;
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Computes the BIP341 sighash for any flag type.
|
|
pub fn taproot_signature_hash<T: Borrow<TxOut>>(
|
|
&mut self,
|
|
input_index: usize,
|
|
prevouts: &Prevouts<T>,
|
|
annex: Option<Annex>,
|
|
leaf_hash_code_separator: Option<(TapLeafHash, u32)>,
|
|
sighash_type: TapSighashType,
|
|
) -> Result<TapSighash, TaprootError> {
|
|
let mut enc = TapSighash::engine();
|
|
self.taproot_encode_signing_data_to(
|
|
&mut enc,
|
|
input_index,
|
|
prevouts,
|
|
annex,
|
|
leaf_hash_code_separator,
|
|
sighash_type,
|
|
).map_err(SigningDataError::unwrap_sighash)?;
|
|
Ok(TapSighash::from_engine(enc))
|
|
}
|
|
|
|
/// Computes the BIP341 sighash for a key spend.
|
|
pub fn taproot_key_spend_signature_hash<T: Borrow<TxOut>>(
|
|
&mut self,
|
|
input_index: usize,
|
|
prevouts: &Prevouts<T>,
|
|
sighash_type: TapSighashType,
|
|
) -> Result<TapSighash, TaprootError> {
|
|
let mut enc = TapSighash::engine();
|
|
self.taproot_encode_signing_data_to(
|
|
&mut enc,
|
|
input_index,
|
|
prevouts,
|
|
None,
|
|
None,
|
|
sighash_type,
|
|
).map_err(SigningDataError::unwrap_sighash)?;
|
|
Ok(TapSighash::from_engine(enc))
|
|
}
|
|
|
|
/// Computes the BIP341 sighash for a script spend.
|
|
///
|
|
/// Assumes the default `OP_CODESEPARATOR` position of `0xFFFFFFFF`. Custom values can be
|
|
/// provided through the more fine-grained API of [`SighashCache::taproot_encode_signing_data_to`].
|
|
pub fn taproot_script_spend_signature_hash<S: Into<TapLeafHash>, T: Borrow<TxOut>>(
|
|
&mut self,
|
|
input_index: usize,
|
|
prevouts: &Prevouts<T>,
|
|
leaf_hash: S,
|
|
sighash_type: TapSighashType,
|
|
) -> Result<TapSighash, TaprootError> {
|
|
let mut enc = TapSighash::engine();
|
|
self.taproot_encode_signing_data_to(
|
|
&mut enc,
|
|
input_index,
|
|
prevouts,
|
|
None,
|
|
Some((leaf_hash.into(), 0xFFFFFFFF)),
|
|
sighash_type,
|
|
).map_err(SigningDataError::unwrap_sighash)?;
|
|
Ok(TapSighash::from_engine(enc))
|
|
}
|
|
|
|
/// Encodes the BIP143 signing data for any flag type into a given object implementing the
|
|
/// [`std::io::Write`] trait.
|
|
///
|
|
/// `script_code` is dependent on the type of the spend transaction. For p2wpkh use
|
|
/// [`Script::p2wpkh_script_code`], for p2wsh just pass in the witness script. (Also see
|
|
/// [`Self::p2wpkh_signature_hash`] and [`SighashCache::p2wsh_signature_hash`].)
|
|
pub fn segwit_v0_encode_signing_data_to<W: Write + ?Sized>(
|
|
&mut self,
|
|
writer: &mut W,
|
|
input_index: usize,
|
|
script_code: &Script,
|
|
value: Amount,
|
|
sighash_type: EcdsaSighashType,
|
|
) -> Result<(), SigningDataError<transaction::InputsIndexError>> {
|
|
let zero_hash = sha256d::Hash::all_zeros();
|
|
|
|
let (sighash, anyone_can_pay) = sighash_type.split_anyonecanpay_flag();
|
|
|
|
self.tx.borrow().version.consensus_encode(writer)?;
|
|
|
|
if !anyone_can_pay {
|
|
self.segwit_cache().prevouts.consensus_encode(writer)?;
|
|
} else {
|
|
zero_hash.consensus_encode(writer)?;
|
|
}
|
|
|
|
if !anyone_can_pay
|
|
&& sighash != EcdsaSighashType::Single
|
|
&& sighash != EcdsaSighashType::None
|
|
{
|
|
self.segwit_cache().sequences.consensus_encode(writer)?;
|
|
} else {
|
|
zero_hash.consensus_encode(writer)?;
|
|
}
|
|
|
|
{
|
|
let txin = &self.tx.borrow().tx_in(input_index).map_err(SigningDataError::sighash)?;
|
|
txin.previous_output.consensus_encode(writer)?;
|
|
script_code.consensus_encode(writer)?;
|
|
value.consensus_encode(writer)?;
|
|
txin.sequence.consensus_encode(writer)?;
|
|
}
|
|
|
|
if sighash != EcdsaSighashType::Single && sighash != EcdsaSighashType::None {
|
|
self.segwit_cache().outputs.consensus_encode(writer)?;
|
|
} else if sighash == EcdsaSighashType::Single && input_index < self.tx.borrow().output.len()
|
|
{
|
|
let mut single_enc = LegacySighash::engine();
|
|
self.tx.borrow().output[input_index].consensus_encode(&mut single_enc)?;
|
|
let hash = LegacySighash::from_engine(single_enc);
|
|
writer.write_all(&hash[..])?;
|
|
} else {
|
|
writer.write_all(&zero_hash[..])?;
|
|
}
|
|
|
|
self.tx.borrow().lock_time.consensus_encode(writer)?;
|
|
sighash_type.to_u32().consensus_encode(writer)?;
|
|
Ok(())
|
|
}
|
|
|
|
/// Computes the BIP143 sighash to spend a p2wpkh transaction for any flag type.
|
|
///
|
|
/// `script_pubkey` is the `scriptPubkey` (native segwit) of the spend transaction
|
|
/// ([`TxOut::script_pubkey`]) or the `redeemScript` (wrapped segwit).
|
|
pub fn p2wpkh_signature_hash(
|
|
&mut self,
|
|
input_index: usize,
|
|
script_pubkey: &Script,
|
|
value: Amount,
|
|
sighash_type: EcdsaSighashType,
|
|
) -> Result<SegwitV0Sighash, P2wpkhError> {
|
|
let script_code = script_pubkey.p2wpkh_script_code().ok_or(P2wpkhError::NotP2wpkhScript)?;
|
|
|
|
let mut enc = SegwitV0Sighash::engine();
|
|
self.segwit_v0_encode_signing_data_to(
|
|
&mut enc,
|
|
input_index,
|
|
&script_code,
|
|
value,
|
|
sighash_type,
|
|
).map_err(SigningDataError::unwrap_sighash)?;
|
|
Ok(SegwitV0Sighash::from_engine(enc))
|
|
}
|
|
|
|
/// Computes the BIP143 sighash to spend a p2wsh transaction for any flag type.
|
|
pub fn p2wsh_signature_hash(
|
|
&mut self,
|
|
input_index: usize,
|
|
witness_script: &Script,
|
|
value: Amount,
|
|
sighash_type: EcdsaSighashType,
|
|
) -> Result<SegwitV0Sighash, transaction::InputsIndexError> {
|
|
let mut enc = SegwitV0Sighash::engine();
|
|
self.segwit_v0_encode_signing_data_to(
|
|
&mut enc,
|
|
input_index,
|
|
witness_script,
|
|
value,
|
|
sighash_type,
|
|
).map_err(SigningDataError::unwrap_sighash)?;
|
|
Ok(SegwitV0Sighash::from_engine(enc))
|
|
}
|
|
|
|
/// Encodes the legacy signing data from which a signature hash for a given input index with a
|
|
/// given sighash flag can be computed.
|
|
///
|
|
/// To actually produce a scriptSig, this hash needs to be run through an ECDSA signer, the
|
|
/// [`EcdsaSighashType`] appended to the resulting sig, and a script written around this, but
|
|
/// this is the general (and hard) part.
|
|
///
|
|
/// The `sighash_type` supports an arbitrary `u32` value, instead of just [`EcdsaSighashType`],
|
|
/// because internally 4 bytes are being hashed, even though only the lowest byte is appended to
|
|
/// signature in a transaction.
|
|
///
|
|
/// # Warning
|
|
///
|
|
/// - Does NOT attempt to support OP_CODESEPARATOR. In general this would require evaluating
|
|
/// `script_pubkey` to determine which separators get evaluated and which don't, which we don't
|
|
/// have the information to determine.
|
|
/// - Does NOT handle the sighash single bug (see "Return type" section)
|
|
///
|
|
/// # Returns
|
|
///
|
|
/// This function can't handle the SIGHASH_SINGLE bug internally, so it returns [`EncodeSigningDataResult`]
|
|
/// that must be handled by the caller (see [`EncodeSigningDataResult::is_sighash_single_bug`]).
|
|
pub fn legacy_encode_signing_data_to<W: Write + ?Sized, U: Into<u32>>(
|
|
&self,
|
|
writer: &mut W,
|
|
input_index: usize,
|
|
script_pubkey: &Script,
|
|
sighash_type: U,
|
|
) -> EncodeSigningDataResult<SigningDataError<transaction::InputsIndexError>> {
|
|
// Validate input_index.
|
|
if let Err(e) = self.tx.borrow().tx_in(input_index) {
|
|
return EncodeSigningDataResult::WriteResult(Err(SigningDataError::Sighash(e)));
|
|
}
|
|
let sighash_type: u32 = sighash_type.into();
|
|
|
|
if is_invalid_use_of_sighash_single(
|
|
sighash_type,
|
|
input_index,
|
|
self.tx.borrow().output.len(),
|
|
) {
|
|
// We cannot correctly handle the SIGHASH_SINGLE bug here because usage of this function
|
|
// will result in the data written to the writer being hashed, however the correct
|
|
// handling of the SIGHASH_SINGLE bug is to return the 'one array' - either implement
|
|
// this behaviour manually or use `signature_hash()`.
|
|
return EncodeSigningDataResult::SighashSingleBug;
|
|
}
|
|
|
|
fn encode_signing_data_to_inner<W: Write + ?Sized>(
|
|
self_: &Transaction,
|
|
writer: &mut W,
|
|
input_index: usize,
|
|
script_pubkey: &Script,
|
|
sighash_type: u32,
|
|
) -> Result<(), io::Error> {
|
|
let (sighash, anyone_can_pay) =
|
|
EcdsaSighashType::from_consensus(sighash_type).split_anyonecanpay_flag();
|
|
|
|
// Build tx to sign
|
|
let mut tx = Transaction {
|
|
version: self_.version,
|
|
lock_time: self_.lock_time,
|
|
input: vec![],
|
|
output: vec![],
|
|
};
|
|
// Add all inputs necessary..
|
|
if anyone_can_pay {
|
|
tx.input = vec![TxIn {
|
|
previous_output: self_.input[input_index].previous_output,
|
|
script_sig: script_pubkey.to_owned(),
|
|
sequence: self_.input[input_index].sequence,
|
|
witness: Witness::default(),
|
|
}];
|
|
} else {
|
|
tx.input = Vec::with_capacity(self_.input.len());
|
|
for (n, input) in self_.input.iter().enumerate() {
|
|
tx.input.push(TxIn {
|
|
previous_output: input.previous_output,
|
|
script_sig: if n == input_index {
|
|
script_pubkey.to_owned()
|
|
} else {
|
|
ScriptBuf::new()
|
|
},
|
|
sequence: if n != input_index
|
|
&& (sighash == EcdsaSighashType::Single
|
|
|| sighash == EcdsaSighashType::None)
|
|
{
|
|
Sequence::ZERO
|
|
} else {
|
|
input.sequence
|
|
},
|
|
witness: Witness::default(),
|
|
});
|
|
}
|
|
}
|
|
// ..then all outputs
|
|
tx.output = match sighash {
|
|
EcdsaSighashType::All => self_.output.clone(),
|
|
EcdsaSighashType::Single => {
|
|
let output_iter = self_
|
|
.output
|
|
.iter()
|
|
.take(input_index + 1) // sign all outputs up to and including this one, but erase
|
|
.enumerate() // all of them except for this one
|
|
.map(|(n, out)| if n == input_index { out.clone() } else { TxOut::NULL });
|
|
output_iter.collect()
|
|
}
|
|
EcdsaSighashType::None => vec![],
|
|
_ => unreachable!(),
|
|
};
|
|
// hash the result
|
|
tx.consensus_encode(writer)?;
|
|
sighash_type.to_le_bytes().consensus_encode(writer)?;
|
|
Ok(())
|
|
}
|
|
|
|
EncodeSigningDataResult::WriteResult(
|
|
encode_signing_data_to_inner(
|
|
self.tx.borrow(),
|
|
writer,
|
|
input_index,
|
|
script_pubkey,
|
|
sighash_type,
|
|
)
|
|
.map_err(Into::into),
|
|
)
|
|
}
|
|
|
|
/// Computes a legacy signature hash for a given input index with a given sighash flag.
|
|
///
|
|
/// To actually produce a scriptSig, this hash needs to be run through an ECDSA signer, the
|
|
/// [`EcdsaSighashType`] appended to the resulting sig, and a script written around this, but
|
|
/// this is the general (and hard) part.
|
|
///
|
|
/// The `sighash_type` supports an arbitrary `u32` value, instead of just [`EcdsaSighashType`],
|
|
/// because internally 4 bytes are being hashed, even though only the lowest byte is appended to
|
|
/// signature in a transaction.
|
|
///
|
|
/// This function correctly handles the sighash single bug by returning the 'one array'. The
|
|
/// sighash single bug becomes exploitable when one tries to sign a transaction with
|
|
/// `SIGHASH_SINGLE` and there is not a corresponding output with the same index as the input.
|
|
///
|
|
/// # Warning
|
|
///
|
|
/// Does NOT attempt to support OP_CODESEPARATOR. In general this would require evaluating
|
|
/// `script_pubkey` to determine which separators get evaluated and which don't, which we don't
|
|
/// have the information to determine.
|
|
pub fn legacy_signature_hash(
|
|
&self,
|
|
input_index: usize,
|
|
script_pubkey: &Script,
|
|
sighash_type: u32,
|
|
) -> Result<LegacySighash, transaction::InputsIndexError> {
|
|
let mut engine = LegacySighash::engine();
|
|
match self
|
|
.legacy_encode_signing_data_to(&mut engine, input_index, script_pubkey, sighash_type)
|
|
.is_sighash_single_bug()
|
|
{
|
|
Ok(true) => Ok(LegacySighash::from_byte_array(UINT256_ONE)),
|
|
Ok(false) => Ok(LegacySighash::from_engine(engine)),
|
|
Err(e) => Err(e.unwrap_sighash()),
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn common_cache(&mut self) -> &CommonCache {
|
|
Self::common_cache_minimal_borrow(&mut self.common_cache, self.tx.borrow())
|
|
}
|
|
|
|
fn common_cache_minimal_borrow<'a>(
|
|
common_cache: &'a mut Option<CommonCache>,
|
|
tx: &Transaction,
|
|
) -> &'a CommonCache {
|
|
common_cache.get_or_insert_with(|| {
|
|
let mut enc_prevouts = sha256::Hash::engine();
|
|
let mut enc_sequences = sha256::Hash::engine();
|
|
for txin in tx.input.iter() {
|
|
txin.previous_output.consensus_encode(&mut enc_prevouts).unwrap();
|
|
txin.sequence.consensus_encode(&mut enc_sequences).unwrap();
|
|
}
|
|
CommonCache {
|
|
prevouts: sha256::Hash::from_engine(enc_prevouts),
|
|
sequences: sha256::Hash::from_engine(enc_sequences),
|
|
outputs: {
|
|
let mut enc = sha256::Hash::engine();
|
|
for txout in tx.output.iter() {
|
|
txout.consensus_encode(&mut enc).unwrap();
|
|
}
|
|
sha256::Hash::from_engine(enc)
|
|
},
|
|
}
|
|
})
|
|
}
|
|
|
|
fn segwit_cache(&mut self) -> &SegwitCache {
|
|
let common_cache = &mut self.common_cache;
|
|
let tx = self.tx.borrow();
|
|
self.segwit_cache.get_or_insert_with(|| {
|
|
let common_cache = Self::common_cache_minimal_borrow(common_cache, tx);
|
|
SegwitCache {
|
|
prevouts: common_cache.prevouts.hash_again(),
|
|
sequences: common_cache.sequences.hash_again(),
|
|
outputs: common_cache.outputs.hash_again(),
|
|
}
|
|
})
|
|
}
|
|
|
|
fn taproot_cache<T: Borrow<TxOut>>(&mut self, prevouts: &[T]) -> &TaprootCache {
|
|
self.taproot_cache.get_or_insert_with(|| {
|
|
let mut enc_amounts = sha256::Hash::engine();
|
|
let mut enc_script_pubkeys = sha256::Hash::engine();
|
|
for prevout in prevouts {
|
|
prevout.borrow().value.consensus_encode(&mut enc_amounts).unwrap();
|
|
prevout.borrow().script_pubkey.consensus_encode(&mut enc_script_pubkeys).unwrap();
|
|
}
|
|
TaprootCache {
|
|
amounts: sha256::Hash::from_engine(enc_amounts),
|
|
script_pubkeys: sha256::Hash::from_engine(enc_script_pubkeys),
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
impl<R: BorrowMut<Transaction>> SighashCache<R> {
|
|
/// Allows modification of witnesses.
|
|
///
|
|
/// As a lint against accidental changes to the transaction that would invalidate the cache and
|
|
/// signatures, `SighashCache` borrows the Transaction so that modifying it is not possible
|
|
/// without hacks with `UnsafeCell` (which is hopefully a strong indication that something is
|
|
/// wrong). However modifying witnesses never invalidates the cache and is actually useful - one
|
|
/// usually wants to put the signature generated for an input into the witness of that input.
|
|
///
|
|
/// This method allows doing exactly that if the transaction is owned by the `SighashCache` or
|
|
/// borrowed mutably.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```compile_fail
|
|
/// let mut sighasher = SighashCache::new(&mut tx_to_sign);
|
|
/// let sighash = sighasher.p2wpkh_signature_hash(input_index, &utxo.script_pubkey, amount, sighash_type)?;
|
|
///
|
|
/// let signature = {
|
|
/// // Sign the sighash using secp256k1
|
|
/// };
|
|
///
|
|
/// *sighasher.witness_mut(input_index).unwrap() = Witness::p2wpkh(&signature, &pk);
|
|
/// ```
|
|
///
|
|
/// For full signing code see the [`segwit v0`] and [`taproot`] signing examples.
|
|
///
|
|
/// [`segwit v0`]: <https://github.com/rust-bitcoin/rust-bitcoin/blob/master/bitcoin/examples/sign-tx-segwit-v0.rs>
|
|
/// [`taproot`]: <https://github.com/rust-bitcoin/rust-bitcoin/blob/master/bitcoin/examples/sign-tx-taproot.rs>
|
|
pub fn witness_mut(&mut self, input_index: usize) -> Option<&mut Witness> {
|
|
self.tx.borrow_mut().input.get_mut(input_index).map(|i| &mut i.witness)
|
|
}
|
|
}
|
|
|
|
/// The `Annex` struct is a slice wrapper enforcing first byte is `0x50`.
|
|
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
|
|
pub struct Annex<'a>(&'a [u8]);
|
|
|
|
impl<'a> Annex<'a> {
|
|
/// Creates a new `Annex` struct checking the first byte is `0x50`.
|
|
pub fn new(annex_bytes: &'a [u8]) -> Result<Self, AnnexError> {
|
|
use AnnexError::*;
|
|
|
|
match annex_bytes.first() {
|
|
Some(&TAPROOT_ANNEX_PREFIX) => Ok(Annex(annex_bytes)),
|
|
Some(other) => Err(IncorrectPrefix(*other)),
|
|
None => Err(Empty),
|
|
}
|
|
}
|
|
|
|
/// Returns the Annex bytes data (including first byte `0x50`).
|
|
pub fn as_bytes(&self) -> &[u8] { self.0 }
|
|
}
|
|
|
|
impl<'a> Encodable for Annex<'a> {
|
|
fn consensus_encode<W: Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
|
|
encode::consensus_encode_with_size(self.0, w)
|
|
}
|
|
}
|
|
|
|
/// Error computing a taproot sighash.
|
|
#[derive(Debug, Clone, PartialEq, Eq)]
|
|
#[non_exhaustive]
|
|
pub enum TaprootError {
|
|
/// Index out of bounds when accessing transaction input vector.
|
|
InputsIndex(transaction::InputsIndexError),
|
|
/// Using `SIGHASH_SINGLE` requires an output at the same index is the input.
|
|
SingleMissingOutput(SingleMissingOutputError),
|
|
/// Prevouts size error.
|
|
PrevoutsSize(PrevoutsSizeError),
|
|
/// Prevouts index error.
|
|
PrevoutsIndex(PrevoutsIndexError),
|
|
/// Prevouts kind error.
|
|
PrevoutsKind(PrevoutsKindError),
|
|
/// Invalid Sighash type.
|
|
InvalidSighashType(u32),
|
|
}
|
|
|
|
internals::impl_from_infallible!(TaprootError);
|
|
|
|
impl fmt::Display for TaprootError {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
use TaprootError::*;
|
|
|
|
match *self {
|
|
InputsIndex(ref e) => write_err!(f, "inputs index"; e),
|
|
SingleMissingOutput(ref e) => write_err!(f, "sighash single"; e),
|
|
PrevoutsSize(ref e) => write_err!(f, "prevouts size"; e),
|
|
PrevoutsIndex(ref e) => write_err!(f, "prevouts index"; e),
|
|
PrevoutsKind(ref e) => write_err!(f, "prevouts kind"; e),
|
|
InvalidSighashType(hash_ty) => write!(f, "invalid taproot sighash type : {} ", hash_ty),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "std")]
|
|
impl std::error::Error for TaprootError {
|
|
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
|
|
use TaprootError::*;
|
|
|
|
match *self {
|
|
InputsIndex(ref e) => Some(e),
|
|
SingleMissingOutput(ref e) => Some(e),
|
|
PrevoutsSize(ref e) => Some(e),
|
|
PrevoutsIndex(ref e) => Some(e),
|
|
PrevoutsKind(ref e) => Some(e),
|
|
InvalidSighashType(_) => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<transaction::InputsIndexError> for TaprootError {
|
|
fn from(e: transaction::InputsIndexError) -> Self { Self::InputsIndex(e) }
|
|
}
|
|
|
|
impl From<PrevoutsSizeError> for TaprootError {
|
|
fn from(e: PrevoutsSizeError) -> Self { Self::PrevoutsSize(e) }
|
|
}
|
|
|
|
impl From<PrevoutsKindError> for TaprootError {
|
|
fn from(e: PrevoutsKindError) -> Self { Self::PrevoutsKind(e) }
|
|
}
|
|
|
|
impl From<PrevoutsIndexError> for TaprootError {
|
|
fn from(e: PrevoutsIndexError) -> Self { Self::PrevoutsIndex(e) }
|
|
}
|
|
|
|
/// Error computing a P2WPKH sighash.
|
|
#[derive(Debug, Clone, PartialEq, Eq)]
|
|
#[non_exhaustive]
|
|
pub enum P2wpkhError {
|
|
/// Error computing the sighash.
|
|
Sighash(transaction::InputsIndexError),
|
|
/// Script is not a witness program for a p2wpkh output.
|
|
NotP2wpkhScript,
|
|
}
|
|
|
|
internals::impl_from_infallible!(P2wpkhError);
|
|
|
|
impl From<transaction::InputsIndexError> for P2wpkhError {
|
|
fn from(value: transaction::InputsIndexError) -> Self {
|
|
P2wpkhError::Sighash(value)
|
|
}
|
|
}
|
|
|
|
impl fmt::Display for P2wpkhError {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
use P2wpkhError::*;
|
|
|
|
match *self {
|
|
Sighash(ref e) => write_err!(f, "error encoding segwit v0 signing data"; e),
|
|
NotP2wpkhScript => write!(f, "script is not a script pubkey for a p2wpkh output"),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "std")]
|
|
impl std::error::Error for P2wpkhError {
|
|
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
|
|
use P2wpkhError::*;
|
|
|
|
match *self {
|
|
Sighash(ref e) => Some(e),
|
|
NotP2wpkhScript => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Using `SIGHASH_SINGLE` requires an output at the same index as the input.
|
|
#[derive(Debug, Clone, PartialEq, Eq)]
|
|
#[non_exhaustive]
|
|
pub struct SingleMissingOutputError {
|
|
/// Input index.
|
|
pub input_index: usize,
|
|
/// Length of the output vector.
|
|
pub outputs_length: usize,
|
|
}
|
|
|
|
impl fmt::Display for SingleMissingOutputError {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
write!(
|
|
f,
|
|
"sighash single requires an output at the same index as the input \
|
|
(input index: {}, outputs length: {})",
|
|
self.input_index, self.outputs_length
|
|
)
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "std")]
|
|
impl std::error::Error for SingleMissingOutputError {
|
|
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> { None }
|
|
}
|
|
|
|
/// Annex must be at least one byte long and the first bytes must be `0x50`.
|
|
#[derive(Debug, Clone, PartialEq, Eq)]
|
|
#[non_exhaustive]
|
|
pub enum AnnexError {
|
|
/// The annex is empty.
|
|
Empty,
|
|
/// Incorrect prefix byte in the annex.
|
|
IncorrectPrefix(u8),
|
|
}
|
|
|
|
internals::impl_from_infallible!(AnnexError);
|
|
|
|
impl fmt::Display for AnnexError {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
use AnnexError::*;
|
|
|
|
match *self {
|
|
Empty => write!(f, "the annex is empty"),
|
|
IncorrectPrefix(byte) =>
|
|
write!(f, "incorrect prefix byte in the annex {:02x}, expecting 0x50", byte),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "std")]
|
|
impl std::error::Error for AnnexError {
|
|
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
|
|
use AnnexError::*;
|
|
|
|
match *self {
|
|
Empty | IncorrectPrefix(_) => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
fn is_invalid_use_of_sighash_single(sighash: u32, input_index: usize, outputs_len: usize) -> bool {
|
|
let ty = EcdsaSighashType::from_consensus(sighash);
|
|
ty == EcdsaSighashType::Single && input_index >= outputs_len
|
|
}
|
|
|
|
/// Result of [`SighashCache::legacy_encode_signing_data_to`].
|
|
///
|
|
/// This type forces the caller to handle SIGHASH_SINGLE bug case.
|
|
///
|
|
/// This corner case can't be expressed using standard `Result`,
|
|
/// in a way that is both convenient and not-prone to accidental
|
|
/// mistakes (like calling `.expect("writer never fails")`).
|
|
#[must_use]
|
|
pub enum EncodeSigningDataResult<E> {
|
|
/// Input data is an instance of `SIGHASH_SINGLE` bug
|
|
SighashSingleBug,
|
|
/// Operation performed normally.
|
|
WriteResult(Result<(), E>),
|
|
}
|
|
|
|
impl<E> EncodeSigningDataResult<E> {
|
|
/// Checks for SIGHASH_SINGLE bug returning error if the writer failed.
|
|
///
|
|
/// This method is provided for easy and correct handling of the result because
|
|
/// SIGHASH_SINGLE bug is a special case that must not be ignored nor cause panicking.
|
|
/// Since the data is usually written directly into a hasher which never fails,
|
|
/// the recommended pattern to handle this is:
|
|
///
|
|
/// ```rust
|
|
/// # use bitcoin::consensus::deserialize;
|
|
/// # use bitcoin::hashes::{Hash, hex::FromHex};
|
|
/// # use bitcoin::sighash::{LegacySighash, SighashCache};
|
|
/// # use bitcoin::Transaction;
|
|
/// # let mut writer = LegacySighash::engine();
|
|
/// # let input_index = 0;
|
|
/// # let script_pubkey = bitcoin::ScriptBuf::new();
|
|
/// # let sighash_u32 = 0u32;
|
|
/// # const SOME_TX: &'static str = "0100000001a15d57094aa7a21a28cb20b59aab8fc7d1149a3bdbcddba9c622e4f5f6a99ece010000006c493046022100f93bb0e7d8db7bd46e40132d1f8242026e045f03a0efe71bbb8e3f475e970d790221009337cd7f1f929f00cc6ff01f03729b069a7c21b59b1736ddfee5db5946c5da8c0121033b9b137ee87d5a812d6f506efdd37f0affa7ffc310711c06c7f3e097c9447c52ffffffff0100e1f505000000001976a9140389035a9225b3839e2bbf32d826a1e222031fd888ac00000000";
|
|
/// # let raw_tx = Vec::from_hex(SOME_TX).unwrap();
|
|
/// # let tx: Transaction = deserialize(&raw_tx).unwrap();
|
|
/// let cache = SighashCache::new(&tx);
|
|
/// if cache.legacy_encode_signing_data_to(&mut writer, input_index, &script_pubkey, sighash_u32)
|
|
/// .is_sighash_single_bug()
|
|
/// .expect("writer can't fail") {
|
|
/// // use a hash value of "1", instead of computing the actual hash due to SIGHASH_SINGLE bug
|
|
/// }
|
|
/// ```
|
|
pub fn is_sighash_single_bug(self) -> Result<bool, E> {
|
|
match self {
|
|
EncodeSigningDataResult::SighashSingleBug => Ok(true),
|
|
EncodeSigningDataResult::WriteResult(Ok(())) => Ok(false),
|
|
EncodeSigningDataResult::WriteResult(Err(e)) => Err(e),
|
|
}
|
|
}
|
|
|
|
/// Maps a `Result<T, E>` to `Result<T, F>` by applying a function to a
|
|
/// contained [`Err`] value, leaving an [`Ok`] value untouched.
|
|
///
|
|
/// Like [`Result::map_err`].
|
|
pub fn map_err<E2, F>(self, f: F) -> EncodeSigningDataResult<E2>
|
|
where
|
|
F: FnOnce(E) -> E2,
|
|
{
|
|
match self {
|
|
EncodeSigningDataResult::SighashSingleBug => EncodeSigningDataResult::SighashSingleBug,
|
|
EncodeSigningDataResult::WriteResult(Err(e)) =>
|
|
EncodeSigningDataResult::WriteResult(Err(f(e))),
|
|
EncodeSigningDataResult::WriteResult(Ok(o)) =>
|
|
EncodeSigningDataResult::WriteResult(Ok(o)),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Error returned when writing signing data fails.
|
|
#[derive(Debug)]
|
|
pub enum SigningDataError<E> {
|
|
/// Can happen only when using `*_encode_signing_*` methods with custom writers, engines
|
|
/// like those used in `*_signature_hash` methods do not error.
|
|
Io(io::Error),
|
|
/// An argument to the called sighash function was invalid.
|
|
Sighash(E),
|
|
}
|
|
|
|
internals::impl_from_infallible!(SigningDataError<E>);
|
|
|
|
impl<E> SigningDataError<E> {
|
|
/// Returns the sighash variant, panicking if it's IO.
|
|
///
|
|
/// This is used when encoding to hash engine when we know that IO doesn't fail.
|
|
fn unwrap_sighash(self) -> E {
|
|
match self {
|
|
Self::Sighash(error) => error,
|
|
Self::Io(error) => panic!("hash engine error {}", error),
|
|
}
|
|
}
|
|
|
|
fn sighash<E2: Into<E>>(error: E2) -> Self {
|
|
Self::Sighash(error.into())
|
|
}
|
|
}
|
|
|
|
// We cannot simultaneously impl `From<E>`. it was determined that this alternative requires less
|
|
// manual `map_err` calls.
|
|
impl<E> From<io::Error> for SigningDataError<E> {
|
|
fn from(value: io::Error) -> Self {
|
|
Self::Io(value)
|
|
}
|
|
}
|
|
|
|
impl<E: fmt::Display> fmt::Display for SigningDataError<E> {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
match self {
|
|
Self::Io(error) => write_err!(f, "failed to write sighash data"; error),
|
|
Self::Sighash(error) => write_err!(f, "failed to compute sighash data"; error),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "std")]
|
|
impl<E: std::error::Error + 'static> std::error::Error for SigningDataError<E> {
|
|
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
|
|
match self {
|
|
SigningDataError::Io(error) => Some(error),
|
|
SigningDataError::Sighash(error) => Some(error),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use std::str::FromStr;
|
|
|
|
use hashes::HashEngine;
|
|
use hex::{test_hex_unwrap as hex, FromHex};
|
|
|
|
use super::*;
|
|
use crate::blockdata::locktime::absolute;
|
|
use crate::consensus::deserialize;
|
|
|
|
extern crate serde_json;
|
|
|
|
#[test]
|
|
fn sighash_single_bug() {
|
|
const SIGHASH_SINGLE: u32 = 3;
|
|
|
|
// We need a tx with more inputs than outputs.
|
|
let tx = Transaction {
|
|
version: transaction::Version::ONE,
|
|
lock_time: absolute::LockTime::ZERO,
|
|
input: vec![TxIn::default(), TxIn::default()],
|
|
output: vec![TxOut::NULL],
|
|
};
|
|
let script = ScriptBuf::new();
|
|
let cache = SighashCache::new(&tx);
|
|
|
|
let got = cache.legacy_signature_hash(1, &script, SIGHASH_SINGLE).expect("sighash");
|
|
let want = LegacySighash::from_slice(&UINT256_ONE).unwrap();
|
|
|
|
assert_eq!(got, want)
|
|
}
|
|
|
|
#[test]
|
|
#[cfg(feature = "serde")]
|
|
fn legacy_sighash() {
|
|
use serde_json::Value;
|
|
|
|
use crate::sighash::SighashCache;
|
|
|
|
fn run_test_sighash(
|
|
tx: &str,
|
|
script: &str,
|
|
input_index: usize,
|
|
hash_type: i64,
|
|
expected_result: &str,
|
|
) {
|
|
let tx: Transaction = deserialize(&Vec::from_hex(tx).unwrap()[..]).unwrap();
|
|
let script = ScriptBuf::from(Vec::from_hex(script).unwrap());
|
|
let mut raw_expected = Vec::from_hex(expected_result).unwrap();
|
|
raw_expected.reverse();
|
|
let want = LegacySighash::from_slice(&raw_expected[..]).unwrap();
|
|
|
|
let cache = SighashCache::new(&tx);
|
|
let got = cache.legacy_signature_hash(input_index, &script, hash_type as u32).unwrap();
|
|
|
|
assert_eq!(got, want);
|
|
}
|
|
|
|
// These test vectors were stolen from libbtc, which is Copyright 2014 Jonas Schnelli MIT
|
|
// They were transformed by replacing {...} with run_test_sighash(...), then the ones containing
|
|
// OP_CODESEPARATOR in their pubkeys were removed
|
|
let data = include_str!("../../tests/data/legacy_sighash.json");
|
|
|
|
let testdata = serde_json::from_str::<Value>(data).unwrap().as_array().unwrap().clone();
|
|
for t in testdata.iter().skip(1) {
|
|
let tx = t.get(0).unwrap().as_str().unwrap();
|
|
let script = t.get(1).unwrap().as_str().unwrap_or("");
|
|
let input_index = t.get(2).unwrap().as_u64().unwrap();
|
|
let hash_type = t.get(3).unwrap().as_i64().unwrap();
|
|
let expected_sighash = t.get(4).unwrap().as_str().unwrap();
|
|
run_test_sighash(tx, script, input_index as usize, hash_type, expected_sighash);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_tap_sighash_hash() {
|
|
let bytes = hex!("00011b96877db45ffa23b307e9f0ac87b80ef9a80b4c5f0db3fbe734422453e83cc5576f3d542c5d4898fb2b696c15d43332534a7c1d1255fda38993545882df92c3e353ff6d36fbfadc4d168452afd8467f02fe53d71714fcea5dfe2ea759bd00185c4cb02bc76d42620393ca358a1a713f4997f9fc222911890afb3fe56c6a19b202df7bffdcfad08003821294279043746631b00e2dc5e52a111e213bbfe6ef09a19428d418dab0d50000000000");
|
|
let expected = hex!("04e808aad07a40b3767a1442fead79af6ef7e7c9316d82dec409bb31e77699b0");
|
|
let mut enc = TapSighash::engine();
|
|
enc.input(&bytes);
|
|
let hash = TapSighash::from_engine(enc);
|
|
assert_eq!(expected, hash.to_byte_array());
|
|
}
|
|
|
|
#[test]
|
|
fn test_sighashes_keyspending() {
|
|
// following test case has been taken from Bitcoin Core test framework
|
|
|
|
test_taproot_sighash(
|
|
"020000000164eb050a5e3da0c2a65e4786f26d753b7bc69691fabccafb11f7acef36641f1846010000003101b2b404392a22000000000017a9147f2bde86fe78bf68a0544a4f290e12f0b7e0a08c87580200000000000017a91425d11723074ecfb96a0a83c3956bfaf362ae0c908758020000000000001600147e20f938993641de67bb0cdd71682aa34c4d29ad5802000000000000160014c64984dc8761acfa99418bd6bedc79b9287d652d72000000",
|
|
"01365724000000000023542156b39dab4f8f3508e0432cfb41fab110170acaa2d4c42539cb90a4dc7c093bc500",
|
|
0,
|
|
"33ca0ebfb4a945eeee9569fc0f5040221275f88690b7f8592ada88ce3bdf6703",
|
|
TapSighashType::Default, None, None, None
|
|
);
|
|
|
|
test_taproot_sighash(
|
|
"0200000002fff49be59befe7566050737910f6ccdc5e749c7f8860ddc140386463d88c5ad0f3000000002cf68eb4a3d67f9d4c079249f7e4f27b8854815cb1ed13842d4fbf395f9e217fd605ee24090100000065235d9203f458520000000000160014b6d48333bb13b4c644e57c43a9a26df3a44b785e58020000000000001976a914eea9461a9e1e3f765d3af3e726162e0229fe3eb688ac58020000000000001976a9143a8869c9f2b5ea1d4ff3aeeb6a8fb2fffb1ad5fe88ac0ad7125c",
|
|
"02591f220000000000225120f25ad35583ea31998d968871d7de1abd2a52f6fe4178b54ea158274806ff4ece48fb310000000000225120f25ad35583ea31998d968871d7de1abd2a52f6fe4178b54ea158274806ff4ece",
|
|
1,
|
|
"626ab955d58c9a8a600a0c580549d06dc7da4e802eb2a531f62a588e430967a8",
|
|
TapSighashType::All, None, None, None
|
|
);
|
|
|
|
test_taproot_sighash(
|
|
"0200000001350005f65aa830ced2079df348e2d8c2bdb4f10e2dde6a161d8a07b40d1ad87dae000000001611d0d603d9dc0e000000000017a914459b6d7d6bbb4d8837b4bf7e9a4556f952da2f5c8758020000000000001976a9141dd70e1299ffc2d5b51f6f87de9dfe9398c33cbb88ac58020000000000001976a9141dd70e1299ffc2d5b51f6f87de9dfe9398c33cbb88aca71c1f4f",
|
|
"01c4811000000000002251201bf9297d0a2968ae6693aadd0fa514717afefd218087a239afb7418e2d22e65c",
|
|
0,
|
|
"dfa9437f9c9a1d1f9af271f79f2f5482f287cdb0d2e03fa92c8a9b216cc6061c",
|
|
TapSighashType::AllPlusAnyoneCanPay, None, None, None
|
|
);
|
|
|
|
test_taproot_sighash(
|
|
"020000000185bed1a6da2bffbd60ec681a1bfb71c5111d6395b99b3f8b2bf90167111bcb18f5010000007c83ace802ded24a00000000001600142c4698f9f7a773866879755aa78c516fb332af8e5802000000000000160014d38639dfbac4259323b98a472405db0c461b31fa61073747",
|
|
"0144c84d0000000000225120e3f2107989c88e67296ab2faca930efa2e3a5bd3ff0904835a11c9e807458621",
|
|
0,
|
|
"3129de36a5d05fff97ffca31eb75fcccbbbc27b3147a7a36a9e4b45d8b625067",
|
|
TapSighashType::None, None, None, None
|
|
);
|
|
|
|
test_taproot_sighash(
|
|
"eb93dbb901028c8515589dac980b6e7f8e4088b77ed866ca0d6d210a7218b6fd0f6b22dd6d7300000000eb4740a9047efc0e0000000000160014913da2128d8fcf292b3691db0e187414aa1783825802000000000000160014913da2128d8fcf292b3691db0e187414aa178382580200000000000017a9143dd27f01c6f7ef9bb9159937b17f17065ed01a0c875802000000000000160014d7630e19df70ada9905ede1722b800c0005f246641000000",
|
|
"013fed110000000000225120eb536ae8c33580290630fc495046e998086a64f8f33b93b07967d9029b265c55",
|
|
0,
|
|
"2441e8b0e063a2083ee790f14f2045022f07258ddde5ee01de543c9e789d80ae",
|
|
TapSighashType::NonePlusAnyoneCanPay, None, None, None
|
|
);
|
|
|
|
test_taproot_sighash(
|
|
"02000000017836b409a5fed32211407e44b971591f2032053f14701fb5b3a30c0ff382f2cc9c0100000061ac55f60288fb5600000000001976a9144ea02f6f182b082fb6ce47e36bbde390b6a41b5088ac58020000000000001976a9144ea02f6f182b082fb6ce47e36bbde390b6a41b5088ace4000000",
|
|
"01efa558000000000022512007071ea3dc7e331b0687d0193d1e6d6ed10e645ef36f10ef8831d5e522ac9e80",
|
|
0,
|
|
"30239345177cadd0e3ea413d49803580abb6cb27971b481b7788a78d35117a88",
|
|
TapSighashType::Single, None, None, None
|
|
);
|
|
|
|
test_taproot_sighash(
|
|
"0100000001aa6deae89d5e0aaca58714fc76ef6f3c8284224888089232d4e663843ed3ab3eae010000008b6657a60450cb4c0000000000160014a3d42b5413ef0c0701c4702f3cd7d4df222c147058020000000000001976a91430b4ed8723a4ee8992aa2c8814cfe5c3ad0ab9d988ac5802000000000000160014365b1166a6ed0a5e8e9dff17a6d00bbb43454bc758020000000000001976a914bc98c51a84fe7fad5dc380eb8b39586eff47241688ac4f313247",
|
|
"0107af4e00000000002251202c36d243dfc06cb56a248e62df27ecba7417307511a81ae61aa41c597a929c69",
|
|
0,
|
|
"bf9c83f26c6dd16449e4921f813f551c4218e86f2ec906ca8611175b41b566df",
|
|
TapSighashType::SinglePlusAnyoneCanPay, None, None, None
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn test_sighashes_with_annex() {
|
|
test_taproot_sighash(
|
|
"0200000001df8123752e8f37d132c4e9f1ff7e4f9b986ade9211267e9ebd5fd22a5e718dec6d01000000ce4023b903cb7b23000000000017a914a18b36ea7a094db2f4940fc09edf154e86de7bd787580200000000000017a914afd0d512a2c5c2b40e25669e9cc460303c325b8b87580200000000000017a914a18b36ea7a094db2f4940fc09edf154e86de7bd787f6020000",
|
|
"01ea49260000000000225120ab5e9800806bf18cb246edcf5fe63441208fe955a4b5a35bbff65f5db622a010",
|
|
0,
|
|
"3b003000add359a364a156e73e02846782a59d0d95ca8c4638aaad99f2ef915c",
|
|
TapSighashType::SinglePlusAnyoneCanPay,
|
|
Some("507b979802e62d397acb29f56743a791894b99372872fc5af06a4f6e8d242d0615cda53062bb20e6ec79756fe39183f0c128adfe85559a8fa042b042c018aa8010143799e44f0893c40e1e"),
|
|
None,
|
|
None,
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn test_sighashes_with_script_path() {
|
|
test_taproot_sighash(
|
|
"020000000189fc651483f9296b906455dd939813bf086b1bbe7c77635e157c8e14ae29062195010000004445b5c7044561320000000000160014331414dbdada7fb578f700f38fb69995fc9b5ab958020000000000001976a914268db0a8104cc6d8afd91233cc8b3d1ace8ac3ef88ac580200000000000017a914ec00dcb368d6a693e11986d265f659d2f59e8be2875802000000000000160014c715799a49a0bae3956df9c17cb4440a673ac0df6f010000",
|
|
"011bec34000000000022512028055142ea437db73382e991861446040b61dd2185c4891d7daf6893d79f7182",
|
|
0,
|
|
"d66de5274a60400c7b08c86ba6b7f198f40660079edf53aca89d2a9501317f2e",
|
|
TapSighashType::All,
|
|
None,
|
|
Some("20cc4e1107aea1d170c5ff5b6817e1303010049724fb3caa7941792ea9d29b3e2bacab"),
|
|
None,
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn test_sighashes_with_script_path_raw_hash() {
|
|
test_taproot_sighash(
|
|
"020000000189fc651483f9296b906455dd939813bf086b1bbe7c77635e157c8e14ae29062195010000004445b5c7044561320000000000160014331414dbdada7fb578f700f38fb69995fc9b5ab958020000000000001976a914268db0a8104cc6d8afd91233cc8b3d1ace8ac3ef88ac580200000000000017a914ec00dcb368d6a693e11986d265f659d2f59e8be2875802000000000000160014c715799a49a0bae3956df9c17cb4440a673ac0df6f010000",
|
|
"011bec34000000000022512028055142ea437db73382e991861446040b61dd2185c4891d7daf6893d79f7182",
|
|
0,
|
|
"d66de5274a60400c7b08c86ba6b7f198f40660079edf53aca89d2a9501317f2e",
|
|
TapSighashType::All,
|
|
None,
|
|
None,
|
|
Some("15a2530514e399f8b5cf0b3d3112cf5b289eaa3e308ba2071b58392fdc6da68a"),
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn test_sighashes_with_annex_and_script() {
|
|
test_taproot_sighash(
|
|
"020000000132fb72cb8fba496755f027a9743e2d698c831fdb8304e4d1a346ac92cbf51acba50100000026bdc7df044aad34000000000017a9144fa2554ed6174586854fa3bc01de58dcf33567d0875802000000000000160014950367e1e62cdf240b35b883fc2f5e39f0eb9ab95802000000000000160014950367e1e62cdf240b35b883fc2f5e39f0eb9ab958020000000000001600141b31217d48ccc8760dcc0710fade5866d628e733a02d5122",
|
|
"011458360000000000225120a7baec3fb9f84614e3899fcc010c638f80f13539344120e1f4d8b68a9a011a13",
|
|
0,
|
|
"a0042aa434f9a75904b64043f2a283f8b4c143c7f4f7f49a6cbe5b9f745f4c15",
|
|
TapSighashType::All,
|
|
Some("50a6272b470e1460e3332ade7bb14b81671c564fb6245761bd5bd531394b28860e0b3808ab229fb51791fb6ae6fa82d915b2efb8f6df83ae1f5ab3db13e30928875e2a22b749d89358de481f19286cd4caa792ce27f9559082d227a731c5486882cc707f83da361c51b7aadd9a0cf68fe7480c410fa137b454482d9a1ebf0f96d760b4d61426fc109c6e8e99a508372c45caa7b000a41f8251305da3f206c1849985ba03f3d9592832b4053afbd23ab25d0465df0bc25a36c223aacf8e04ec736a418c72dc319e4da3e972e349713ca600965e7c665f2090d5a70e241ac164115a1f5639f28b1773327715ca307ace64a2de7f0e3df70a2ffee3857689f909c0dad46d8a20fa373a4cc6eed6d4c9806bf146f0d76baae1"),
|
|
Some("7520ab9160dd8299dc1367659be3e8f66781fe440d52940c7f8d314a89b9f2698d406ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6eadac"),
|
|
None,
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
#[rustfmt::skip] // Allow long function call `taproot_signature_hash`.
|
|
fn test_sighash_errors() {
|
|
use crate::transaction::{IndexOutOfBoundsError, InputsIndexError};
|
|
|
|
let dumb_tx = Transaction {
|
|
version: transaction::Version::TWO,
|
|
lock_time: absolute::LockTime::ZERO,
|
|
input: vec![TxIn::default()],
|
|
output: vec![],
|
|
};
|
|
let mut c = SighashCache::new(&dumb_tx);
|
|
|
|
// 1.29 fixes
|
|
let empty_vec = vec![];
|
|
let empty_prevouts : Prevouts<TxOut> = Prevouts::All(&empty_vec);
|
|
assert_eq!(
|
|
c.taproot_signature_hash(0, &empty_prevouts, None, None, TapSighashType::All),
|
|
Err(TaprootError::PrevoutsSize(PrevoutsSizeError))
|
|
);
|
|
let two = vec![TxOut::NULL, TxOut::NULL];
|
|
let too_many_prevouts = Prevouts::All(&two);
|
|
assert_eq!(
|
|
c.taproot_signature_hash(0, &too_many_prevouts, None, None, TapSighashType::All),
|
|
Err(TaprootError::PrevoutsSize(PrevoutsSizeError))
|
|
);
|
|
let tx_out = TxOut::NULL;
|
|
let prevout = Prevouts::One(1, &tx_out);
|
|
assert_eq!(
|
|
c.taproot_signature_hash(0, &prevout, None, None, TapSighashType::All),
|
|
Err(TaprootError::PrevoutsKind(PrevoutsKindError))
|
|
);
|
|
assert_eq!(
|
|
c.taproot_signature_hash(0, &prevout, None, None, TapSighashType::AllPlusAnyoneCanPay),
|
|
Err(TaprootError::PrevoutsIndex(PrevoutsIndexError::InvalidOneIndex))
|
|
);
|
|
assert_eq!(
|
|
c.taproot_signature_hash(10, &prevout, None, None, TapSighashType::AllPlusAnyoneCanPay),
|
|
Err(InputsIndexError(IndexOutOfBoundsError {
|
|
index: 10,
|
|
length: 1
|
|
}).into())
|
|
);
|
|
let prevout = Prevouts::One(0, &tx_out);
|
|
assert_eq!(
|
|
c.taproot_signature_hash(0, &prevout, None, None, TapSighashType::SinglePlusAnyoneCanPay),
|
|
Err(TaprootError::SingleMissingOutput(SingleMissingOutputError {
|
|
input_index: 0,
|
|
outputs_length: 0
|
|
}))
|
|
);
|
|
assert_eq!(
|
|
c.legacy_signature_hash(10, Script::new(), 0u32),
|
|
Err(InputsIndexError(IndexOutOfBoundsError {
|
|
index: 10,
|
|
length: 1
|
|
}))
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn test_annex_errors() {
|
|
assert_eq!(Annex::new(&[]), Err(AnnexError::Empty));
|
|
assert_eq!(Annex::new(&[0x51]), Err(AnnexError::IncorrectPrefix(0x51)));
|
|
assert_eq!(Annex::new(&[0x51, 0x50]), Err(AnnexError::IncorrectPrefix(0x51)));
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
fn test_taproot_sighash(
|
|
tx_hex: &str,
|
|
prevout_hex: &str,
|
|
input_index: usize,
|
|
expected_hash: &str,
|
|
sighash_type: TapSighashType,
|
|
annex_hex: Option<&str>,
|
|
script_hex: Option<&str>,
|
|
script_leaf_hash: Option<&str>,
|
|
) {
|
|
let tx_bytes = Vec::from_hex(tx_hex).unwrap();
|
|
let tx: Transaction = deserialize(&tx_bytes).unwrap();
|
|
let prevout_bytes = Vec::from_hex(prevout_hex).unwrap();
|
|
let prevouts: Vec<TxOut> = deserialize(&prevout_bytes).unwrap();
|
|
let annex_inner;
|
|
let annex = match annex_hex {
|
|
Some(annex_hex) => {
|
|
annex_inner = Vec::from_hex(annex_hex).unwrap();
|
|
Some(Annex::new(&annex_inner).unwrap())
|
|
}
|
|
None => None,
|
|
};
|
|
|
|
let leaf_hash = match (script_hex, script_leaf_hash) {
|
|
(Some(script_hex), _) => {
|
|
let script_inner = ScriptBuf::from_hex(script_hex).unwrap();
|
|
Some(ScriptPath::with_defaults(&script_inner).leaf_hash())
|
|
}
|
|
(_, Some(script_leaf_hash)) => Some(script_leaf_hash.parse::<TapLeafHash>().unwrap()),
|
|
_ => None,
|
|
};
|
|
// All our tests use the default `0xFFFFFFFF` codeseparator value
|
|
let leaf_hash = leaf_hash.map(|lh| (lh, 0xFFFFFFFF));
|
|
|
|
let prevouts = if sighash_type.split_anyonecanpay_flag().1 && tx_bytes[0] % 2 == 0 {
|
|
// for anyonecanpay the `Prevouts::All` variant is good anyway, but sometimes we want to
|
|
// test other codepaths
|
|
Prevouts::One(input_index, prevouts[input_index].clone())
|
|
} else {
|
|
Prevouts::All(&prevouts)
|
|
};
|
|
|
|
let mut sighash_cache = SighashCache::new(&tx);
|
|
|
|
let hash = sighash_cache
|
|
.taproot_signature_hash(input_index, &prevouts, annex, leaf_hash, sighash_type)
|
|
.unwrap();
|
|
let expected = Vec::from_hex(expected_hash).unwrap();
|
|
assert_eq!(expected, hash.to_byte_array());
|
|
}
|
|
|
|
#[cfg(feature = "serde")]
|
|
#[test]
|
|
fn bip_341_sighash_tests() {
|
|
use hex::DisplayHex;
|
|
|
|
fn sighash_deser_numeric<'de, D>(deserializer: D) -> Result<TapSighashType, D::Error>
|
|
where
|
|
D: actual_serde::Deserializer<'de>,
|
|
{
|
|
use actual_serde::de::{Deserialize, Error, Unexpected};
|
|
|
|
let raw = u8::deserialize(deserializer)?;
|
|
TapSighashType::from_consensus_u8(raw).map_err(|_| {
|
|
D::Error::invalid_value(
|
|
Unexpected::Unsigned(raw.into()),
|
|
&"number in range 0-3 or 0x81-0x83",
|
|
)
|
|
})
|
|
}
|
|
|
|
use secp256k1::{SecretKey, XOnlyPublicKey};
|
|
|
|
use crate::consensus::serde as con_serde;
|
|
use crate::taproot::{TapNodeHash, TapTweakHash};
|
|
|
|
#[derive(serde::Deserialize)]
|
|
#[serde(crate = "actual_serde")]
|
|
struct UtxoSpent {
|
|
#[serde(rename = "scriptPubKey")]
|
|
script_pubkey: ScriptBuf,
|
|
#[serde(rename = "amountSats")]
|
|
value: Amount,
|
|
}
|
|
|
|
#[derive(serde::Deserialize)]
|
|
#[serde(rename_all = "camelCase")]
|
|
#[serde(crate = "actual_serde")]
|
|
struct KpsGiven {
|
|
#[serde(with = "con_serde::With::<con_serde::Hex>")]
|
|
raw_unsigned_tx: Transaction,
|
|
utxos_spent: Vec<UtxoSpent>,
|
|
}
|
|
|
|
#[derive(serde::Deserialize)]
|
|
#[serde(rename_all = "camelCase")]
|
|
#[serde(crate = "actual_serde")]
|
|
struct KpsIntermediary {
|
|
hash_prevouts: sha256::Hash,
|
|
hash_outputs: sha256::Hash,
|
|
hash_sequences: sha256::Hash,
|
|
hash_amounts: sha256::Hash,
|
|
hash_script_pubkeys: sha256::Hash,
|
|
}
|
|
|
|
#[derive(serde::Deserialize)]
|
|
#[serde(rename_all = "camelCase")]
|
|
#[serde(crate = "actual_serde")]
|
|
struct KpsInputSpendingGiven {
|
|
txin_index: usize,
|
|
internal_privkey: SecretKey,
|
|
merkle_root: Option<TapNodeHash>,
|
|
#[serde(deserialize_with = "sighash_deser_numeric")]
|
|
hash_type: TapSighashType,
|
|
}
|
|
|
|
#[derive(serde::Deserialize)]
|
|
#[serde(rename_all = "camelCase")]
|
|
#[serde(crate = "actual_serde")]
|
|
struct KpsInputSpendingIntermediary {
|
|
internal_pubkey: XOnlyPublicKey,
|
|
tweak: TapTweakHash,
|
|
tweaked_privkey: SecretKey,
|
|
sig_msg: String,
|
|
//precomputed_used: Vec<String>, // unused
|
|
sig_hash: TapSighash,
|
|
}
|
|
|
|
#[derive(serde::Deserialize)]
|
|
#[serde(rename_all = "camelCase")]
|
|
#[serde(crate = "actual_serde")]
|
|
struct KpsInputSpendingExpected {
|
|
witness: Vec<String>,
|
|
}
|
|
|
|
#[derive(serde::Deserialize)]
|
|
#[serde(rename_all = "camelCase")]
|
|
#[serde(crate = "actual_serde")]
|
|
struct KpsInputSpending {
|
|
given: KpsInputSpendingGiven,
|
|
intermediary: KpsInputSpendingIntermediary,
|
|
expected: KpsInputSpendingExpected,
|
|
// auxiliary: KpsAuxiliary, //unused
|
|
}
|
|
|
|
#[derive(serde::Deserialize)]
|
|
#[serde(rename_all = "camelCase")]
|
|
#[serde(crate = "actual_serde")]
|
|
struct KeyPathSpending {
|
|
given: KpsGiven,
|
|
intermediary: KpsIntermediary,
|
|
input_spending: Vec<KpsInputSpending>,
|
|
}
|
|
|
|
#[derive(serde::Deserialize)]
|
|
#[serde(rename_all = "camelCase")]
|
|
#[serde(crate = "actual_serde")]
|
|
struct TestData {
|
|
version: u64,
|
|
key_path_spending: Vec<KeyPathSpending>,
|
|
//script_pubkey: Vec<ScriptPubKey>, // unused
|
|
}
|
|
|
|
let json_str = include_str!("../../tests/data/bip341_tests.json");
|
|
let mut data =
|
|
serde_json::from_str::<TestData>(json_str).expect("JSON was not well-formatted");
|
|
|
|
assert_eq!(data.version, 1u64);
|
|
let secp = &secp256k1::Secp256k1::new();
|
|
let key_path = data.key_path_spending.remove(0);
|
|
|
|
let raw_unsigned_tx = key_path.given.raw_unsigned_tx;
|
|
let utxos = key_path
|
|
.given
|
|
.utxos_spent
|
|
.into_iter()
|
|
.map(|txo| TxOut { value: txo.value, script_pubkey: txo.script_pubkey })
|
|
.collect::<Vec<_>>();
|
|
|
|
// Test intermediary
|
|
let mut cache = SighashCache::new(&raw_unsigned_tx);
|
|
|
|
let expected = key_path.intermediary;
|
|
// Compute all caches
|
|
assert_eq!(expected.hash_amounts, cache.taproot_cache(&utxos).amounts);
|
|
assert_eq!(expected.hash_outputs, cache.common_cache().outputs);
|
|
assert_eq!(expected.hash_prevouts, cache.common_cache().prevouts);
|
|
assert_eq!(expected.hash_script_pubkeys, cache.taproot_cache(&utxos).script_pubkeys);
|
|
assert_eq!(expected.hash_sequences, cache.common_cache().sequences);
|
|
|
|
for mut inp in key_path.input_spending {
|
|
let tx_ind = inp.given.txin_index;
|
|
let internal_priv_key = inp.given.internal_privkey;
|
|
let merkle_root = inp.given.merkle_root;
|
|
let hash_ty = inp.given.hash_type;
|
|
|
|
let expected = inp.intermediary;
|
|
let sig_str = inp.expected.witness.remove(0);
|
|
let (expected_key_spend_sig, expected_hash_ty) = if sig_str.len() == 128 {
|
|
(
|
|
secp256k1::schnorr::Signature::from_str(&sig_str).unwrap(),
|
|
TapSighashType::Default,
|
|
)
|
|
} else {
|
|
let hash_ty = u8::from_str_radix(&sig_str[128..130], 16).unwrap();
|
|
let hash_ty = TapSighashType::from_consensus_u8(hash_ty).unwrap();
|
|
(secp256k1::schnorr::Signature::from_str(&sig_str[..128]).unwrap(), hash_ty)
|
|
};
|
|
|
|
// tests
|
|
let keypair = secp256k1::Keypair::from_secret_key(secp, &internal_priv_key);
|
|
let (internal_key, _parity) = XOnlyPublicKey::from_keypair(&keypair);
|
|
let tweak = TapTweakHash::from_key_and_tweak(internal_key, merkle_root);
|
|
let tweaked_keypair = keypair.add_xonly_tweak(secp, &tweak.to_scalar()).unwrap();
|
|
let mut sig_msg = Vec::new();
|
|
cache
|
|
.taproot_encode_signing_data_to(
|
|
&mut sig_msg,
|
|
tx_ind,
|
|
&Prevouts::All(&utxos),
|
|
None,
|
|
None,
|
|
hash_ty,
|
|
)
|
|
.unwrap();
|
|
let sighash = cache
|
|
.taproot_signature_hash(tx_ind, &Prevouts::All(&utxos), None, None, hash_ty)
|
|
.unwrap();
|
|
|
|
let msg = secp256k1::Message::from_digest(sighash.to_byte_array());
|
|
let key_spend_sig = secp.sign_schnorr_with_aux_rand(&msg, &tweaked_keypair, &[0u8; 32]);
|
|
|
|
assert_eq!(expected.internal_pubkey, internal_key);
|
|
assert_eq!(expected.tweak, tweak);
|
|
assert_eq!(expected.sig_msg, sig_msg.to_lower_hex_string());
|
|
assert_eq!(expected.sig_hash, sighash);
|
|
assert_eq!(expected_hash_ty, hash_ty);
|
|
assert_eq!(expected_key_spend_sig, key_spend_sig);
|
|
|
|
let tweaked_priv_key = SecretKey::from_keypair(&tweaked_keypair);
|
|
assert_eq!(expected.tweaked_privkey, tweaked_priv_key);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn sighashtype_fromstr_display() {
|
|
let sighashtypes = vec![
|
|
("SIGHASH_DEFAULT", TapSighashType::Default),
|
|
("SIGHASH_ALL", TapSighashType::All),
|
|
("SIGHASH_NONE", TapSighashType::None),
|
|
("SIGHASH_SINGLE", TapSighashType::Single),
|
|
("SIGHASH_ALL|SIGHASH_ANYONECANPAY", TapSighashType::AllPlusAnyoneCanPay),
|
|
("SIGHASH_NONE|SIGHASH_ANYONECANPAY", TapSighashType::NonePlusAnyoneCanPay),
|
|
("SIGHASH_SINGLE|SIGHASH_ANYONECANPAY", TapSighashType::SinglePlusAnyoneCanPay),
|
|
];
|
|
for (s, sht) in sighashtypes {
|
|
assert_eq!(sht.to_string(), s);
|
|
assert_eq!(TapSighashType::from_str(s).unwrap(), sht);
|
|
}
|
|
let sht_mistakes = vec![
|
|
"SIGHASH_ALL | SIGHASH_ANYONECANPAY",
|
|
"SIGHASH_NONE |SIGHASH_ANYONECANPAY",
|
|
"SIGHASH_SINGLE| SIGHASH_ANYONECANPAY",
|
|
"SIGHASH_ALL SIGHASH_ANYONECANPAY",
|
|
"SIGHASH_NONE |",
|
|
"SIGHASH_SIGNLE",
|
|
"DEFAULT",
|
|
"ALL",
|
|
"sighash_none",
|
|
"Sighash_none",
|
|
"SigHash_None",
|
|
"SigHash_NONE",
|
|
];
|
|
for s in sht_mistakes {
|
|
assert_eq!(
|
|
TapSighashType::from_str(s).unwrap_err().to_string(),
|
|
format!("unrecognized SIGHASH string '{}'", s)
|
|
);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn bip143_p2wpkh() {
|
|
let tx = deserialize::<Transaction>(
|
|
&hex!(
|
|
"0100000002fff7f7881a8099afa6940d42d1e7f6362bec38171ea3edf433541db4e4ad969f000000\
|
|
0000eeffffffef51e1b804cc89d182d279655c3aa89e815b1b309fe287d9b2b55d57b90ec68a01000000\
|
|
00ffffffff02202cb206000000001976a9148280b37df378db99f66f85c95a783a76ac7a6d5988ac9093\
|
|
510d000000001976a9143bde42dbee7e4dbe6a21b2d50ce2f0167faa815988ac11000000"
|
|
),
|
|
).unwrap();
|
|
|
|
let spk = ScriptBuf::from_hex("00141d0f172a0ecb48aee1be1f2687d2963ae33f71a1").unwrap();
|
|
let value = Amount::from_sat(600_000_000);
|
|
|
|
let mut cache = SighashCache::new(&tx);
|
|
assert_eq!(
|
|
cache.p2wpkh_signature_hash(1, &spk, value, EcdsaSighashType::All).unwrap(),
|
|
"c37af31116d1b27caf68aae9e3ac82f1477929014d5b917657d0eb49478cb670"
|
|
.parse::<SegwitV0Sighash>()
|
|
.unwrap(),
|
|
);
|
|
|
|
let cache = cache.segwit_cache();
|
|
// Parse hex into Vec because BIP143 test vector displays forwards but our sha256d::Hash displays backwards.
|
|
assert_eq!(
|
|
cache.prevouts.as_byte_array(),
|
|
&Vec::from_hex("96b827c8483d4e9b96712b6713a7b68d6e8003a781feba36c31143470b4efd37")
|
|
.unwrap()[..],
|
|
);
|
|
assert_eq!(
|
|
cache.sequences.as_byte_array(),
|
|
&Vec::from_hex("52b0a642eea2fb7ae638c36f6252b6750293dbe574a806984b8e4d8548339a3b")
|
|
.unwrap()[..],
|
|
);
|
|
assert_eq!(
|
|
cache.outputs.as_byte_array(),
|
|
&Vec::from_hex("863ef3e1a92afbfdb97f31ad0fc7683ee943e9abcf2501590ff8f6551f47e5e5")
|
|
.unwrap()[..],
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn bip143_p2wpkh_nested_in_p2sh() {
|
|
let tx = deserialize::<Transaction>(
|
|
&hex!(
|
|
"0100000001db6b1b20aa0fd7b23880be2ecbd4a98130974cf4748fb66092ac4d3ceb1a5477010000\
|
|
0000feffffff02b8b4eb0b000000001976a914a457b684d7f0d539a46a45bbc043f35b59d0d96388ac00\
|
|
08af2f000000001976a914fd270b1ee6abcaea97fea7ad0402e8bd8ad6d77c88ac92040000"
|
|
),
|
|
).unwrap();
|
|
|
|
let redeem_script =
|
|
ScriptBuf::from_hex("001479091972186c449eb1ded22b78e40d009bdf0089").unwrap();
|
|
let value = Amount::from_sat(1_000_000_000);
|
|
|
|
let mut cache = SighashCache::new(&tx);
|
|
assert_eq!(
|
|
cache.p2wpkh_signature_hash(0, &redeem_script, value, EcdsaSighashType::All).unwrap(),
|
|
"64f3b0f4dd2bb3aa1ce8566d220cc74dda9df97d8490cc81d89d735c92e59fb6"
|
|
.parse::<SegwitV0Sighash>()
|
|
.unwrap(),
|
|
);
|
|
|
|
let cache = cache.segwit_cache();
|
|
// Parse hex into Vec because BIP143 test vector displays forwards but our sha256d::Hash displays backwards.
|
|
assert_eq!(
|
|
cache.prevouts.as_byte_array(),
|
|
&Vec::from_hex("b0287b4a252ac05af83d2dcef00ba313af78a3e9c329afa216eb3aa2a7b4613a")
|
|
.unwrap()[..],
|
|
);
|
|
assert_eq!(
|
|
cache.sequences.as_byte_array(),
|
|
&Vec::from_hex("18606b350cd8bf565266bc352f0caddcf01e8fa789dd8a15386327cf8cabe198")
|
|
.unwrap()[..],
|
|
);
|
|
assert_eq!(
|
|
cache.outputs.as_byte_array(),
|
|
&Vec::from_hex("de984f44532e2173ca0d64314fcefe6d30da6f8cf27bafa706da61df8a226c83")
|
|
.unwrap()[..],
|
|
);
|
|
}
|
|
|
|
// Note, if you are looking at the test vectors in BIP-143 and wondering why there is a `cf`
|
|
// prepended to all the script_code hex it is the length byte, it gets added when we consensus
|
|
// encode a script.
|
|
fn bip143_p2wsh_nested_in_p2sh_data() -> (Transaction, ScriptBuf, Amount) {
|
|
let tx = deserialize::<Transaction>(&hex!(
|
|
"010000000136641869ca081e70f394c6948e8af409e18b619df2ed74aa106c1ca29787b96e0100000000\
|
|
ffffffff0200e9a435000000001976a914389ffce9cd9ae88dcc0631e88a821ffdbe9bfe2688acc0832f\
|
|
05000000001976a9147480a33f950689af511e6e84c138dbbd3c3ee41588ac00000000"
|
|
))
|
|
.unwrap();
|
|
|
|
let witness_script = ScriptBuf::from_hex(
|
|
"56210307b8ae49ac90a048e9b53357a2354b3334e9c8bee813ecb98e99a7e07e8c3ba32103b28f0c28\
|
|
bfab54554ae8c658ac5c3e0ce6e79ad336331f78c428dd43eea8449b21034b8113d703413d57761b8b\
|
|
9781957b8c0ac1dfe69f492580ca4195f50376ba4a21033400f6afecb833092a9a21cfdf1ed1376e58\
|
|
c5d1f47de74683123987e967a8f42103a6d48b1131e94ba04d9737d61acdaa1322008af9602b3b1486\
|
|
2c07a1789aac162102d8b661b0b3302ee2f162b09e07a55ad5dfbe673a9f01d9f0c19617681024306b\
|
|
56ae",
|
|
)
|
|
.unwrap();
|
|
|
|
let value = Amount::from_sat(987_654_321);
|
|
(tx, witness_script, value)
|
|
}
|
|
|
|
#[test]
|
|
fn bip143_p2wsh_nested_in_p2sh_sighash_type_all() {
|
|
let (tx, witness_script, value) = bip143_p2wsh_nested_in_p2sh_data();
|
|
let mut cache = SighashCache::new(&tx);
|
|
assert_eq!(
|
|
cache.p2wsh_signature_hash(0, &witness_script, value, EcdsaSighashType::All).unwrap(),
|
|
"185c0be5263dce5b4bb50a047973c1b6272bfbd0103a89444597dc40b248ee7c"
|
|
.parse::<SegwitV0Sighash>()
|
|
.unwrap(),
|
|
);
|
|
|
|
// We only test the cache intermediate values for `EcdsaSighashType::All` because they are
|
|
// not the same as the BIP test vectors for all the rest of the sighash types. These fields
|
|
// are private so it does not effect sighash cache usage, we do test against the produced
|
|
// sighash for all sighash types.
|
|
|
|
let cache = cache.segwit_cache();
|
|
// Parse hex into Vec because BIP143 test vector displays forwards but our sha256d::Hash displays backwards.
|
|
assert_eq!(
|
|
cache.prevouts.as_byte_array(),
|
|
&Vec::from_hex("74afdc312af5183c4198a40ca3c1a275b485496dd3929bca388c4b5e31f7aaa0")
|
|
.unwrap()[..],
|
|
);
|
|
assert_eq!(
|
|
cache.sequences.as_byte_array(),
|
|
&Vec::from_hex("3bb13029ce7b1f559ef5e747fcac439f1455a2ec7c5f09b72290795e70665044")
|
|
.unwrap()[..],
|
|
);
|
|
assert_eq!(
|
|
cache.outputs.as_byte_array(),
|
|
&Vec::from_hex("bc4d309071414bed932f98832b27b4d76dad7e6c1346f487a8fdbb8eb90307cc")
|
|
.unwrap()[..],
|
|
);
|
|
}
|
|
|
|
macro_rules! check_bip143_p2wsh_nested_in_p2sh {
|
|
($($test_name:ident, $sighash_type:ident, $sighash:literal);* $(;)?) => {
|
|
$(
|
|
#[test]
|
|
fn $test_name() {
|
|
use EcdsaSighashType::*;
|
|
|
|
let (tx, witness_script, value) = bip143_p2wsh_nested_in_p2sh_data();
|
|
let mut cache = SighashCache::new(&tx);
|
|
assert_eq!(
|
|
cache
|
|
.p2wsh_signature_hash(0, &witness_script, value, $sighash_type)
|
|
.unwrap(),
|
|
$sighash
|
|
.parse::<SegwitV0Sighash>()
|
|
.unwrap(),
|
|
);
|
|
}
|
|
)*
|
|
}
|
|
}
|
|
check_bip143_p2wsh_nested_in_p2sh! {
|
|
// EcdsaSighashType::All tested above.
|
|
bip143_p2wsh_nested_in_p2sh_sighash_none, None, "e9733bc60ea13c95c6527066bb975a2ff29a925e80aa14c213f686cbae5d2f36";
|
|
bip143_p2wsh_nested_in_p2sh_sighash_single, Single, "1e1f1c303dc025bd664acb72e583e933fae4cff9148bf78c157d1e8f78530aea";
|
|
bip143_p2wsh_nested_in_p2sh_sighash_all_plus_anyonecanpay, AllPlusAnyoneCanPay, "2a67f03e63a6a422125878b40b82da593be8d4efaafe88ee528af6e5a9955c6e";
|
|
bip143_p2wsh_nested_in_p2sh_sighash_none_plus_anyonecanpay, NonePlusAnyoneCanPay, "781ba15f3779d5542ce8ecb5c18716733a5ee42a6f51488ec96154934e2c890a";
|
|
bip143_p2wsh_nested_in_p2sh_sighash_single_plus_anyonecanpay, SinglePlusAnyoneCanPay, "511e8e52ed574121fc1b654970395502128263f62662e076dc6baf05c2e6a99b";
|
|
}
|
|
}
|