Add `Secp256k1::with_rng`, parameterize `Secp256k1` over its RNG.
Now that you can't create secret keys by directly passing a Rng to `SecretKey::new`, we need a way to allow user-chosed randomness. We add it to the `Secp256k1`.
This commit is contained in:
parent
e52faee98f
commit
9e717d4219
23
src/key.rs
23
src/key.rs
|
@ -55,7 +55,7 @@ fn random_32_bytes<R:Rng>(rng: &mut R) -> [u8; 32] {
|
|||
impl SecretKey {
|
||||
/// Creates a new random secret key
|
||||
#[inline]
|
||||
pub fn new(secp: &mut Secp256k1) -> SecretKey {
|
||||
pub fn new<R: Rng>(secp: &mut Secp256k1<R>) -> SecretKey {
|
||||
let mut data = random_32_bytes(&mut secp.rng);
|
||||
unsafe {
|
||||
while ffi::secp256k1_ec_seckey_verify(secp.ctx, data.as_ptr()) == 0 {
|
||||
|
@ -67,7 +67,8 @@ impl SecretKey {
|
|||
|
||||
/// Converts a `SECRET_KEY_SIZE`-byte slice to a secret key
|
||||
#[inline]
|
||||
pub fn from_slice(secp: &Secp256k1, data: &[u8]) -> Result<SecretKey, Error> {
|
||||
pub fn from_slice<R: Rng>(secp: &Secp256k1<R>, data: &[u8])
|
||||
-> Result<SecretKey, Error> {
|
||||
match data.len() {
|
||||
constants::SECRET_KEY_SIZE => {
|
||||
let mut ret = [0; constants::SECRET_KEY_SIZE];
|
||||
|
@ -87,7 +88,10 @@ impl SecretKey {
|
|||
|
||||
#[inline]
|
||||
/// Adds one secret key to another, modulo the curve order
|
||||
pub fn add_assign(&mut self, secp: &Secp256k1, other: &SecretKey) -> Result<(), Error> {
|
||||
pub fn add_assign<R: Rng>(&mut self,
|
||||
secp: &Secp256k1<R>,
|
||||
other: &SecretKey)
|
||||
-> Result<(), Error> {
|
||||
unsafe {
|
||||
if ffi::secp256k1_ec_privkey_tweak_add(secp.ctx, self.as_mut_ptr(), other.as_ptr()) != 1 {
|
||||
Err(Unknown)
|
||||
|
@ -113,7 +117,10 @@ impl PublicKey {
|
|||
|
||||
/// Creates a new public key from a secret key.
|
||||
#[inline]
|
||||
pub fn from_secret_key(secp: &Secp256k1, sk: &SecretKey, compressed: bool) -> PublicKey {
|
||||
pub fn from_secret_key<R: Rng>(secp: &Secp256k1<R>,
|
||||
sk: &SecretKey,
|
||||
compressed: bool)
|
||||
-> PublicKey {
|
||||
let mut pk = PublicKey::new(compressed);
|
||||
let compressed = if compressed {1} else {0};
|
||||
let mut len = 0;
|
||||
|
@ -132,7 +139,8 @@ impl PublicKey {
|
|||
|
||||
/// Creates a public key directly from a slice
|
||||
#[inline]
|
||||
pub fn from_slice(secp: &Secp256k1, data: &[u8]) -> Result<PublicKey, Error> {
|
||||
pub fn from_slice<R: Rng>(secp: &Secp256k1<R>, data: &[u8])
|
||||
-> Result<PublicKey, Error> {
|
||||
match data.len() {
|
||||
constants::COMPRESSED_PUBLIC_KEY_SIZE => {
|
||||
let mut ret = [0; constants::COMPRESSED_PUBLIC_KEY_SIZE];
|
||||
|
@ -204,7 +212,10 @@ impl PublicKey {
|
|||
|
||||
#[inline]
|
||||
/// Adds the pk corresponding to `other` to the pk `self` in place
|
||||
pub fn add_exp_assign(&mut self, secp: &Secp256k1, other: &SecretKey) -> Result<(), Error> {
|
||||
pub fn add_exp_assign<R: Rng>(&mut self,
|
||||
secp: &Secp256k1<R>,
|
||||
other: &SecretKey)
|
||||
-> Result<(), Error> {
|
||||
unsafe {
|
||||
if ffi::secp256k1_ec_pubkey_tweak_add(secp.ctx, self.as_mut_ptr(),
|
||||
self.len() as ::libc::c_int,
|
||||
|
|
29
src/lib.rs
29
src/lib.rs
|
@ -212,28 +212,37 @@ impl fmt::Display for Error {
|
|||
}
|
||||
|
||||
/// The secp256k1 engine, used to execute all signature operations
|
||||
pub struct Secp256k1 {
|
||||
pub struct Secp256k1<R: Rng = Fortuna> {
|
||||
ctx: ffi::Context,
|
||||
rng: Fortuna
|
||||
rng: R
|
||||
}
|
||||
|
||||
impl Drop for Secp256k1 {
|
||||
impl<R: Rng> Drop for Secp256k1<R> {
|
||||
fn drop(&mut self) {
|
||||
unsafe { ffi::secp256k1_context_destroy(self.ctx); }
|
||||
}
|
||||
}
|
||||
|
||||
impl Secp256k1 {
|
||||
/// Constructs a new secp256k1 engine.
|
||||
pub fn new() -> io::Result<Secp256k1> {
|
||||
impl Secp256k1<Fortuna> {
|
||||
/// Constructs a new secp256k1 engine with the default key-generation Rng
|
||||
/// (a Fortuna seeded with randomness from the OS during `new`)
|
||||
pub fn new() -> io::Result<Secp256k1<Fortuna>> {
|
||||
let mut osrng = try!(OsRng::new());
|
||||
let mut seed = [0; 2048];
|
||||
osrng.fill_bytes(&mut seed);
|
||||
let rng: Fortuna = SeedableRng::from_seed(&seed[..]);
|
||||
Secp256k1::with_rng(rng)
|
||||
}
|
||||
}
|
||||
|
||||
impl<R: Rng> Secp256k1<R> {
|
||||
/// Constructs a new secp256k1 engine with its key-generation RNG specified
|
||||
pub fn with_rng(rng: R) -> io::Result<Secp256k1<R>> {
|
||||
let ctx = unsafe {
|
||||
ffi::secp256k1_context_create(ffi::SECP256K1_START_VERIFY |
|
||||
ffi::SECP256K1_START_SIGN)
|
||||
};
|
||||
let mut osrng = try!(OsRng::new());
|
||||
let mut seed = [0; 2048];
|
||||
osrng.fill_bytes(&mut seed);
|
||||
Ok(Secp256k1 { ctx: ctx, rng: SeedableRng::from_seed(&seed[..]) })
|
||||
Ok(Secp256k1 { ctx: ctx, rng: rng })
|
||||
}
|
||||
|
||||
/// Generates a random keypair. Convenience function for `key::SecretKey::new`
|
||||
|
|
Loading…
Reference in New Issue