rust-secp256k1-unsafe-fast/src/ecdh.rs

313 lines
9.9 KiB
Rust
Raw Normal View History

// Bitcoin secp256k1 bindings
// Written in 2015 by
// Andrew Poelstra
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//
//! Support for shared secret computations.
//!
use core::{ptr, str};
use core::borrow::Borrow;
use {Error, from_hex};
use key::{SecretKey, PublicKey};
use ffi::{self, CPtr};
use secp256k1_sys::types::{c_int, c_uchar, c_void};
use constants;
// The logic for displaying shared secrets relies on this (see `secret.rs`).
const SHARED_SECRET_SIZE: usize = constants::SECRET_KEY_SIZE;
/// Enables two parties to create a shared secret without revealing their own secrets.
///
/// # Examples
///
/// ```
/// # #[cfg(all(feature = "std", feature = "rand-std"))] {
/// # use secp256k1::Secp256k1;
/// # use secp256k1::ecdh::SharedSecret;
/// # use secp256k1::rand::thread_rng;
/// let s = Secp256k1::new();
/// let (sk1, pk1) = s.generate_keypair(&mut thread_rng());
/// let (sk2, pk2) = s.generate_keypair(&mut thread_rng());
/// let sec1 = SharedSecret::new(&pk2, &sk1);
/// let sec2 = SharedSecret::new(&pk1, &sk2);
/// assert_eq!(sec1, sec2);
/// # }
// ```
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct SharedSecret([u8; SHARED_SECRET_SIZE]);
impl_display_secret!(SharedSecret);
impl SharedSecret {
/// Creates a new shared secret from a pubkey and secret key.
#[inline]
pub fn new(point: &PublicKey, scalar: &SecretKey) -> SharedSecret {
let mut buf = [0u8; SHARED_SECRET_SIZE];
let res = unsafe {
ffi::secp256k1_ecdh(
ffi::secp256k1_context_no_precomp,
buf.as_mut_ptr(),
point.as_c_ptr(),
scalar.as_c_ptr(),
ffi::secp256k1_ecdh_hash_function_default,
ptr::null_mut(),
)
};
debug_assert_eq!(res, 1);
SharedSecret(buf)
}
/// Returns the shared secret as a byte value.
#[inline]
pub fn secret_bytes(&self) -> [u8; SHARED_SECRET_SIZE] {
self.0
}
/// Creates a shared secret from `bytes` array.
#[inline]
pub fn from_bytes(bytes: [u8; SHARED_SECRET_SIZE]) -> SharedSecret {
SharedSecret(bytes)
}
/// Creates a shared secret from `bytes` slice.
#[inline]
pub fn from_slice(bytes: &[u8]) -> Result<SharedSecret, Error> {
match bytes.len() {
SHARED_SECRET_SIZE => {
let mut ret = [0u8; SHARED_SECRET_SIZE];
ret[..].copy_from_slice(bytes);
Ok(SharedSecret(ret))
}
_ => Err(Error::InvalidSharedSecret)
}
}
}
impl str::FromStr for SharedSecret {
type Err = Error;
fn from_str(s: &str) -> Result<SharedSecret, Error> {
let mut res = [0u8; SHARED_SECRET_SIZE];
match from_hex(s, &mut res) {
Ok(SHARED_SECRET_SIZE) => Ok(SharedSecret::from_bytes(res)),
_ => Err(Error::InvalidSharedSecret)
}
}
}
impl Borrow<[u8]> for SharedSecret {
fn borrow(&self) -> &[u8] {
&self.0
}
}
impl AsRef<[u8]> for SharedSecret {
fn as_ref(&self) -> &[u8] {
&self.0
}
}
/// Creates a shared point from public key and secret key.
///
/// **Important: use of a strong cryptographic hash function may be critical to security! Do NOT use
/// unless you understand cryptographical implications.** If not, use SharedSecret instead.
///
/// Can be used like `SharedSecret` but caller is responsible for then hashing the returned buffer.
/// This allows for the use of a custom hash function since `SharedSecret` uses SHA256.
///
/// # Returns
///
/// 64 bytes representing the (x,y) co-ordinates of a point on the curve (32 bytes each).
///
/// # Examples
/// ```
/// # #[cfg(all(feature = "bitcoin_hashes", feature = "rand-std", feature = "std"))] {
/// # use secp256k1::{ecdh, Secp256k1, PublicKey, SecretKey};
/// # use secp256k1::hashes::{Hash, sha512};
/// # use secp256k1::rand::thread_rng;
///
/// let s = Secp256k1::new();
/// let (sk1, pk1) = s.generate_keypair(&mut thread_rng());
/// let (sk2, pk2) = s.generate_keypair(&mut thread_rng());
///
/// let point1 = ecdh::shared_secret_point(&pk2, &sk1);
/// let secret1 = sha512::Hash::hash(&point1);
/// let point2 = ecdh::shared_secret_point(&pk1, &sk2);
/// let secret2 = sha512::Hash::hash(&point2);
/// assert_eq!(secret1, secret2)
/// # }
/// ```
pub fn shared_secret_point(point: &PublicKey, scalar: &SecretKey) -> [u8; 64] {
let mut xy = [0u8; 64];
let res = unsafe {
ffi::secp256k1_ecdh(
ffi::secp256k1_context_no_precomp,
xy.as_mut_ptr(),
point.as_ptr(),
scalar.as_ptr(),
Some(c_callback),
ptr::null_mut(),
)
};
// Our callback *always* returns 1.
// The scalar was verified to be valid (0 > scalar > group_order) via the type system.
debug_assert_eq!(res, 1);
xy
}
unsafe extern "C" fn c_callback(output: *mut c_uchar, x: *const c_uchar, y: *const c_uchar, _data: *mut c_void) -> c_int {
ptr::copy_nonoverlapping(x, output, 32);
ptr::copy_nonoverlapping(y, output.offset(32), 32);
1
}
#[cfg(feature = "serde")]
#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
impl ::serde::Serialize for SharedSecret {
fn serialize<S: ::serde::Serializer>(&self, s: S) -> Result<S::Ok, S::Error> {
if s.is_human_readable() {
let mut buf = [0u8; SHARED_SECRET_SIZE * 2];
s.serialize_str(::to_hex(&self.0, &mut buf).expect("fixed-size hex serialization"))
} else {
s.serialize_bytes(&self.as_ref()[..])
}
}
}
#[cfg(feature = "serde")]
#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
impl<'de> ::serde::Deserialize<'de> for SharedSecret {
fn deserialize<D: ::serde::Deserializer<'de>>(d: D) -> Result<Self, D::Error> {
if d.is_human_readable() {
d.deserialize_str(super::serde_util::FromStrVisitor::new(
"a hex string representing 32 byte SharedSecret"
))
} else {
d.deserialize_bytes(super::serde_util::BytesVisitor::new(
"raw 32 bytes SharedSecret",
SharedSecret::from_slice
))
}
}
}
#[cfg(test)]
#[allow(unused_imports)]
mod tests {
use super::*;
use rand::thread_rng;
use super::super::Secp256k1;
#[cfg(target_arch = "wasm32")]
use wasm_bindgen_test::wasm_bindgen_test as test;
#[test]
#[cfg(all(feature="rand-std", any(feature = "alloc", feature = "std")))]
fn ecdh() {
let s = Secp256k1::signing_only();
let (sk1, pk1) = s.generate_keypair(&mut thread_rng());
let (sk2, pk2) = s.generate_keypair(&mut thread_rng());
let sec1 = SharedSecret::new(&pk2, &sk1);
let sec2 = SharedSecret::new(&pk1, &sk2);
2018-11-06 22:04:02 +00:00
let sec_odd = SharedSecret::new(&pk1, &sk1);
assert_eq!(sec1, sec2);
assert!(sec_odd != sec2);
}
#[test]
fn test_c_callback() {
let x = [5u8; 32];
let y = [7u8; 32];
let mut output = [0u8; 64];
let res = unsafe { super::c_callback(output.as_mut_ptr(), x.as_ptr(), y.as_ptr(), ptr::null_mut()) };
assert_eq!(res, 1);
let mut new_x = [0u8; 32];
let mut new_y = [0u8; 32];
new_x.copy_from_slice(&output[..32]);
new_y.copy_from_slice(&output[32..]);
assert_eq!(x, new_x);
assert_eq!(y, new_y);
}
#[test]
#[cfg(not(fuzzing))]
#[cfg(all(feature="rand-std", feature = "std", feature = "bitcoin_hashes"))]
fn bitcoin_hashes_and_sys_generate_same_secret() {
use hashes::{sha256, Hash, HashEngine};
let s = Secp256k1::signing_only();
let (sk1, _) = s.generate_keypair(&mut thread_rng());
let (_, pk2) = s.generate_keypair(&mut thread_rng());
let secret_sys = SharedSecret::new(&pk2, &sk1);
let xy = shared_secret_point(&pk2, &sk1);
// Mimics logic in `bitcoin-core/secp256k1/src/module/main_impl.h`
let version = (xy[63] & 0x01) | 0x02;
let mut engine = sha256::HashEngine::default();
engine.input(&[version]);
engine.input(&xy.as_ref()[..32]);
let secret_bh = sha256::Hash::from_engine(engine);
assert_eq!(secret_bh.as_inner(), secret_sys.as_ref());
}
#[test]
#[cfg(all(feature = "serde", any(feature = "alloc", feature = "std")))]
fn serde() {
use serde_test::{Configure, Token, assert_tokens};
static BYTES: [u8; 32] = [
1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 2, 3, 4, 5, 6, 7,
0xff, 0xff, 0, 0, 0xff, 0xff, 0, 0,
99, 99, 99, 99, 99, 99, 99, 99
];
static STR: &'static str = "\
01010101010101010001020304050607ffff0000ffff00006363636363636363\
";
let secret = SharedSecret::from_slice(&BYTES).unwrap();
assert_tokens(&secret.compact(), &[Token::BorrowedBytes(&BYTES[..])]);
assert_tokens(&secret.compact(), &[Token::Bytes(&BYTES)]);
assert_tokens(&secret.compact(), &[Token::ByteBuf(&BYTES)]);
assert_tokens(&secret.readable(), &[Token::BorrowedStr(STR)]);
assert_tokens(&secret.readable(), &[Token::Str(STR)]);
assert_tokens(&secret.readable(), &[Token::String(STR)]);
}
}
#[cfg(all(test, feature = "unstable"))]
mod benches {
use rand::thread_rng;
use test::{Bencher, black_box};
2015-09-20 20:18:53 +00:00
use super::SharedSecret;
use super::super::Secp256k1;
#[bench]
pub fn bench_ecdh(bh: &mut Bencher) {
let s = Secp256k1::signing_only();
let (sk, pk) = s.generate_keypair(&mut thread_rng());
bh.iter( || {
2018-11-06 22:04:02 +00:00
let res = SharedSecret::new(&pk, &sk);
black_box(res);
});
}
}